You're looking at a specific version of this model. Jump to the model overview.
edenartlab /sdxl-lora-trainer:9ddd8d5e
Input schema
The fields you can use to run this model with an API. If you don’t give a value for a field its default value will be used.
Field | Type | Default value | Description |
---|---|---|---|
name |
string
|
unnamed
|
Name of new LORA concept
|
lora_training_urls |
string
|
Training images for new LORA concept (can be image urls or an url to a .zip file of images)
|
|
concept_mode |
string
(enum)
|
style
Options: style, face, object |
What are you trying to learn?
|
sd_model_version |
string
(enum)
|
sdxl
Options: sdxl, sd15 |
SDXL gives much better LoRa's if you just need static images. If you want to make AnimateDiff animations, train an SD15 lora.
|
max_train_steps |
integer
|
300
|
Number of training steps. Increasing this usually leads to overfitting, only viable if you have > 100 training imgs. For faces you may want to reduce to eg 300
|
checkpointing_steps |
integer
|
10000
|
Save a checkpoint every n steps (The final checkpoint will always be saved)
|
resolution |
integer
|
512
|
Square pixel resolution which your images will be resized to for training, highly recommended: 512 or 768
|
unet_lr |
number
|
0.0003
|
final learning rate of unet (after warmup), increasing this usually leads to strong overfitting
|
ti_lr |
number
|
0.001
|
Learning rate for training textual inversion embeddings. Don't alter unless you know what you're doing.
|
lora_rank |
integer
|
16
|
Rank of LoRA embeddings for the unet.
|
n_tokens |
integer
|
3
Min: 1 Max: 4 |
How many new tokens to train (highly recommended to leave this at 2)
|
train_batch_size |
integer
|
4
|
Batch size (per device) for training (dont increase unless running on a BIG GPU)
|
n_sample_imgs |
integer
|
4
|
Number of sample images in validation grid
|
validation_img_size |
integer
|
1024
|
Resolution of sample images in validation grid
|
sample_imgs_lora_scale |
number
|
Scale factor for LoRa when generating sample images. If not provided, will be set automatically
|
|
seed |
integer
|
Random seed for reproducible training. Leave empty to use a random seed
|
Output schema
The shape of the response you’ll get when you run this model with an API.
Schema
{'items': {'properties': {'attributes': {'title': 'Attributes',
'type': 'object'},
'files': {'default': [],
'items': {'format': 'uri',
'type': 'string'},
'title': 'Files',
'type': 'array'},
'isFinal': {'default': False,
'title': 'Isfinal',
'type': 'boolean'},
'name': {'title': 'Name', 'type': 'string'},
'progress': {'title': 'Progress', 'type': 'number'},
'thumbnails': {'default': [],
'items': {'format': 'uri',
'type': 'string'},
'title': 'Thumbnails',
'type': 'array'}},
'title': 'CogOutput',
'type': 'object'},
'title': 'Output',
'type': 'array',
'x-cog-array-type': 'iterator'}