You're looking at a specific version of this model. Jump to the model overview.
edenartlab /sdxl-lora-trainer:b4a19aae
Input schema
The fields you can use to run this model with an API. If you don’t give a value for a field its default value will be used.
Field | Type | Default value | Description |
---|---|---|---|
lora_training_urls |
string
|
Training images for new LORA concept (can be image urls or a .zip file of images)
|
|
concept_mode |
string
|
object
|
'face' / 'style' / 'object' (default)
|
sd_model_version |
string
|
sdxl
|
'sdxl' / 'sd15'
|
name |
string
|
unnamed
|
Name of new LORA concept
|
seed |
integer
|
Random seed for reproducible training. Leave empty to use a random seed
|
|
resolution |
integer
|
512
|
Square pixel resolution which your images will be resized to for training, recommended: 512 or 640
|
train_batch_size |
integer
|
4
|
Batch size (per device) for training
|
max_train_steps |
integer
|
400
|
Number of training steps.
|
token_warmup_steps |
integer
|
50
|
Number of steps for token (textual_inversion) warmup.
|
checkpointing_steps |
integer
|
10000
|
Number of steps between saving checkpoints. Set to very very high number to disable checkpointing, because you don't need intermediate checkpoints.
|
is_lora |
boolean
|
True
|
Whether to use LoRA training. If set to False, will use full fine tuning
|
prodigy_d_coef |
number
|
0.5
|
Multiplier for internal learning rate of Prodigy optimizer
|
ti_lr |
number
|
0.001
|
Learning rate for training textual inversion embeddings. Don't alter unless you know what you're doing.
|
freeze_ti_after_completion_f |
number
|
0.5
|
Fraction of training steps after which to freeze textual inversion embeddings
|
lora_rank |
integer
|
12
|
Rank of LoRA embeddings for the unet.
|
text_encoder_lora_optimizer |
string
|
adamw
|
Which optimizer to use for the text_encoder_lora. ['adamw', None] are supported right now (None will disable txt-lora training)
|
caption_model |
string
|
gpt4-v
|
Which captioning model to use. ['gpt4-v', 'blip'] are supported right now
|
n_tokens |
integer
|
2
|
How many new tokens to inject per concept
|
verbose |
boolean
|
True
|
verbose output
|
debug |
boolean
|
False
|
For debugging locally only (dont activate this on replicate)
|
Output schema
The shape of the response you’ll get when you run this model with an API.
Schema
{'items': {'properties': {'attributes': {'title': 'Attributes',
'type': 'object'},
'files': {'default': [],
'items': {'format': 'uri',
'type': 'string'},
'title': 'Files',
'type': 'array'},
'isFinal': {'default': False,
'title': 'Isfinal',
'type': 'boolean'},
'name': {'title': 'Name', 'type': 'string'},
'progress': {'title': 'Progress', 'type': 'number'},
'thumbnails': {'default': [],
'items': {'format': 'uri',
'type': 'string'},
'title': 'Thumbnails',
'type': 'array'}},
'title': 'CogOutput',
'type': 'object'},
'title': 'Output',
'type': 'array',
'x-cog-array-type': 'iterator'}