enhance-replicate/wan22-comfyui-full-prep
Public
10
runs
Run enhance-replicate/wan22-comfyui-full-prep with an API
Use one of our client libraries to get started quickly. Clicking on a library will take you to the Playground tab where you can tweak different inputs, see the results, and copy the corresponding code to use in your own project.
Input schema
The fields you can use to run this model with an API. If you don't give a value for a field its default value will be used.
Field | Type | Default value | Description |
---|---|---|---|
prompt |
string
|
A baby dressed in a fluffy outfit is gently nose-to-nose with a small kitten. The background is softly blurred, highlighting the tender interaction between them.
|
Text prompt for video generation (only used with default WAN2.2 workflow)
|
workflow_json |
string
|
{
"6": {
"inputs": {
"text": "A baby dressed in a fluffy outfit is gently nose-to-nose with a small kitten. The background is softly blurred, highlighting the tender interaction between them.",
"clip": [
"12",
0
]
},
"class_type": "CLIPTextEncode",
"_meta": {
"title": "CLIP Text Encode (Prompt)"
}
},
"7": {
"inputs": {
"text": "色调艳丽, 过曝, 静态, 细节模糊不清, 字幕, 风格, 作品, 画作, 画面, 静止, 整体发灰, 最差质量, 低质量, JPEG压缩残留, 丑陋的, 残缺的, 多余的手指, 画得不好的手部, 画得不好的脸部, 畸形的, 毁容的, 形态畸形的肢体, 手指融合, 静止不动的画面, 杂乱的背景, 三条腿, 背景人很多, 倒着走",
"clip": [
"12",
0
]
},
"class_type": "CLIPTextEncode",
"_meta": {
"title": "CLIP Text Encode (Prompt)"
}
},
"12": {
"inputs": {
"clip_name": "umt5_xxl_fp8_e4m3fn_scaled.safetensors",
"type": "wan",
"device": "default"
},
"class_type": "CLIPLoader",
"_meta": {
"title": "Load CLIP"
}
},
"14": {
"inputs": {
"vae_name": "wan_2.1_vae.safetensors"
},
"class_type": "VAELoader",
"_meta": {
"title": "Load VAE"
}
},
"44": {
"inputs": {
"add_noise": "disable",
"noise_seed": 270712418741028,
"steps": 8,
"cfg": 1,
"sampler_name": "res_multistep",
"scheduler": "beta",
"start_at_step": 4,
"end_at_step": 10000,
"return_with_leftover_noise": "disable",
"model": [
"48",
0
],
"positive": [
"6",
0
],
"negative": [
"7",
0
],
"latent_image": [
"45",
0
]
},
"class_type": "KSamplerAdvanced",
"_meta": {
"title": "KSampler (Advanced)"
}
},
"45": {
"inputs": {
"add_noise": "enable",
"noise_seed": 868084697386425,
"steps": 8,
"cfg": 1,
"sampler_name": "res_multistep",
"scheduler": "beta",
"start_at_step": 0,
"end_at_step": 4,
"return_with_leftover_noise": "enable",
"model": [
"47",
0
],
"positive": [
"6",
0
],
"negative": [
"7",
0
],
"latent_image": [
"73",
0
]
},
"class_type": "KSamplerAdvanced",
"_meta": {
"title": "KSampler (Advanced)"
}
},
"46": {
"inputs": {
"unet_name": "Wan2.2-T2V-A14B-HighNoise-Q4_K_M.gguf"
},
"class_type": "UnetLoaderGGUF",
"_meta": {
"title": "Unet Loader (GGUF)"
}
},
"47": {
"inputs": {
"shift": 8.000000000000002,
"model": [
"50",
0
]
},
"class_type": "ModelSamplingSD3",
"_meta": {
"title": "ModelSamplingSD3"
}
},
"48": {
"inputs": {
"shift": 8.000000000000002,
"model": [
"51",
0
]
},
"class_type": "ModelSamplingSD3",
"_meta": {
"title": "ModelSamplingSD3"
}
},
"49": {
"inputs": {
"unet_name": "Wan2.2-T2V-A14B-LowNoise-Q4_K_M.gguf"
},
"class_type": "UnetLoaderGGUF",
"_meta": {
"title": "Unet Loader (GGUF)"
}
},
"50": {
"inputs": {
"lora_name": "lightx2v_T2V_14B_cfg_step_distill_v2_lora_rank64_bf16.safetensors",
"strength_model": 1.0000000000000002,
"model": [
"58",
0
]
},
"class_type": "LoraLoaderModelOnly",
"_meta": {
"title": "LoraLoaderModelOnly"
}
},
"51": {
"inputs": {
"lora_name": "lightx2v_T2V_14B_cfg_step_distill_v2_lora_rank64_bf16.safetensors",
"strength_model": 1.0000000000000002,
"model": [
"59",
0
]
},
"class_type": "LoraLoaderModelOnly",
"_meta": {
"title": "LoraLoaderModelOnly"
}
},
"58": {
"inputs": {
"lora_name": "Wan2.1_T2V_14B_FusionX_LoRA.safetensors",
"strength_model": 0.5000000000000001,
"model": [
"46",
0
]
},
"class_type": "LoraLoaderModelOnly",
"_meta": {
"title": "LoraLoaderModelOnly"
}
},
"59": {
"inputs": {
"lora_name": "Wan2.1_T2V_14B_FusionX_LoRA.safetensors",
"strength_model": 0.5000000000000001,
"model": [
"49",
0
]
},
"class_type": "LoraLoaderModelOnly",
"_meta": {
"title": "LoraLoaderModelOnly"
}
},
"64": {
"inputs": {
"frame_rate": 8,
"loop_count": 0,
"filename_prefix": "AnimateDiff",
"format": "video/h264-mp4",
"pix_fmt": "yuv420p",
"crf": 19,
"save_metadata": true,
"trim_to_audio": false,
"pingpong": false,
"save_output": true,
"images": [
"71",
0
]
},
"class_type": "VHS_VideoCombine",
"_meta": {
"title": "Video Combine 🎥🅥🅗🅢"
}
},
"65": {
"inputs": {
"tile_size": 512,
"overlap": 64,
"temporal_size": 64,
"temporal_overlap": 8,
"samples": [
"44",
0
],
"vae": [
"14",
0
]
},
"class_type": "VAEDecodeTiled",
"_meta": {
"title": "VAE Decode (Tiled)"
}
},
"69": {
"inputs": {
"upscale_model": [
"70",
0
],
"image": [
"65",
0
]
},
"class_type": "ImageUpscaleWithModel",
"_meta": {
"title": "Upscale Image (using Model)"
}
},
"70": {
"inputs": {
"model_name": "RealESRGAN_x2.pth"
},
"class_type": "UpscaleModelLoader",
"_meta": {
"title": "Load Upscale Model"
}
},
"71": {
"inputs": {
"ckpt_name": "rife47.pth",
"clear_cache_after_n_frames": 10,
"multiplier": 2,
"fast_mode": true,
"ensemble": true,
"scale_factor": 1,
"frames": [
"69",
0
]
},
"class_type": "RIFE VFI",
"_meta": {
"title": "RIFE VFI (recommend rife47 and rife49)"
}
},
"73": {
"inputs": {
"width": 384,
"height": 704,
"length": 41,
"batch_size": 1,
"vae": [
"14",
0
]
},
"class_type": "Wan22ImageToVideoLatent",
"_meta": {
"title": "Wan22ImageToVideoLatent"
}
}
}
|
Your ComfyUI workflow as JSON string or URL. Default: WAN2.2 text-to-video workflow. Get API format from ComfyUI using 'Save (API format)'. Instructions: https://github.com/replicate/cog-comfyui
|
input_file |
string
|
Input image, video, tar or zip file. Read guidance on workflows and input files here: https://github.com/replicate/cog-comfyui. Alternatively, you can replace inputs with URLs in your JSON workflow and the model will download them.
|
|
return_temp_files |
boolean
|
False
|
Return any temporary files, such as preprocessed controlnet images. Useful for debugging.
|
output_format |
None
|
webp
|
Format of the output images
|
output_quality |
integer
|
95
Max: 100 |
Quality of the output images, from 0 to 100. 100 is best quality, 0 is lowest quality.
|
randomise_seeds |
boolean
|
True
|
Automatically randomise seeds (seed, noise_seed, rand_seed)
|
force_reset_cache |
boolean
|
False
|
Force reset the ComfyUI cache before running the workflow. Useful for debugging.
|
{
"type": "object",
"title": "Input",
"properties": {
"prompt": {
"type": "string",
"title": "Prompt",
"default": "A baby dressed in a fluffy outfit is gently nose-to-nose with a small kitten. The background is softly blurred, highlighting the tender interaction between them.",
"x-order": 0,
"description": "Text prompt for video generation (only used with default WAN2.2 workflow)"
},
"input_file": {
"type": "string",
"title": "Input File",
"format": "uri",
"x-order": 2,
"nullable": true,
"description": "Input image, video, tar or zip file. Read guidance on workflows and input files here: https://github.com/replicate/cog-comfyui. Alternatively, you can replace inputs with URLs in your JSON workflow and the model will download them."
},
"output_format": {
"enum": [
"webp",
"jpg",
"png"
],
"type": "string",
"title": "output_format",
"description": "Format of the output images",
"default": "webp",
"x-order": 4
},
"workflow_json": {
"type": "string",
"title": "Workflow Json",
"default": "{\n \"6\": {\n \"inputs\": {\n \"text\": \"A baby dressed in a fluffy outfit is gently nose-to-nose with a small kitten. The background is softly blurred, highlighting the tender interaction between them.\",\n \"clip\": [\n \"12\",\n 0\n ]\n },\n \"class_type\": \"CLIPTextEncode\",\n \"_meta\": {\n \"title\": \"CLIP Text Encode (Prompt)\"\n }\n },\n \"7\": {\n \"inputs\": {\n \"text\": \"\u8272\u8c03\u8273\u4e3d, \u8fc7\u66dd, \u9759\u6001, \u7ec6\u8282\u6a21\u7cca\u4e0d\u6e05, \u5b57\u5e55, \u98ce\u683c, \u4f5c\u54c1, \u753b\u4f5c, \u753b\u9762, \u9759\u6b62, \u6574\u4f53\u53d1\u7070, \u6700\u5dee\u8d28\u91cf, \u4f4e\u8d28\u91cf, JPEG\u538b\u7f29\u6b8b\u7559, \u4e11\u964b\u7684, \u6b8b\u7f3a\u7684, \u591a\u4f59\u7684\u624b\u6307, \u753b\u5f97\u4e0d\u597d\u7684\u624b\u90e8, \u753b\u5f97\u4e0d\u597d\u7684\u8138\u90e8, \u7578\u5f62\u7684, \u6bc1\u5bb9\u7684, \u5f62\u6001\u7578\u5f62\u7684\u80a2\u4f53, \u624b\u6307\u878d\u5408, \u9759\u6b62\u4e0d\u52a8\u7684\u753b\u9762, \u6742\u4e71\u7684\u80cc\u666f, \u4e09\u6761\u817f, \u80cc\u666f\u4eba\u5f88\u591a, \u5012\u7740\u8d70\",\n \"clip\": [\n \"12\",\n 0\n ]\n },\n \"class_type\": \"CLIPTextEncode\",\n \"_meta\": {\n \"title\": \"CLIP Text Encode (Prompt)\"\n }\n },\n \"12\": {\n \"inputs\": {\n \"clip_name\": \"umt5_xxl_fp8_e4m3fn_scaled.safetensors\",\n \"type\": \"wan\",\n \"device\": \"default\"\n },\n \"class_type\": \"CLIPLoader\",\n \"_meta\": {\n \"title\": \"Load CLIP\"\n }\n },\n \"14\": {\n \"inputs\": {\n \"vae_name\": \"wan_2.1_vae.safetensors\"\n },\n \"class_type\": \"VAELoader\",\n \"_meta\": {\n \"title\": \"Load VAE\"\n }\n },\n \"44\": {\n \"inputs\": {\n \"add_noise\": \"disable\",\n \"noise_seed\": 270712418741028,\n \"steps\": 8,\n \"cfg\": 1,\n \"sampler_name\": \"res_multistep\",\n \"scheduler\": \"beta\",\n \"start_at_step\": 4,\n \"end_at_step\": 10000,\n \"return_with_leftover_noise\": \"disable\",\n \"model\": [\n \"48\",\n 0\n ],\n \"positive\": [\n \"6\",\n 0\n ],\n \"negative\": [\n \"7\",\n 0\n ],\n \"latent_image\": [\n \"45\",\n 0\n ]\n },\n \"class_type\": \"KSamplerAdvanced\",\n \"_meta\": {\n \"title\": \"KSampler (Advanced)\"\n }\n },\n \"45\": {\n \"inputs\": {\n \"add_noise\": \"enable\",\n \"noise_seed\": 868084697386425,\n \"steps\": 8,\n \"cfg\": 1,\n \"sampler_name\": \"res_multistep\",\n \"scheduler\": \"beta\",\n \"start_at_step\": 0,\n \"end_at_step\": 4,\n \"return_with_leftover_noise\": \"enable\",\n \"model\": [\n \"47\",\n 0\n ],\n \"positive\": [\n \"6\",\n 0\n ],\n \"negative\": [\n \"7\",\n 0\n ],\n \"latent_image\": [\n \"73\",\n 0\n ]\n },\n \"class_type\": \"KSamplerAdvanced\",\n \"_meta\": {\n \"title\": \"KSampler (Advanced)\"\n }\n },\n \"46\": {\n \"inputs\": {\n \"unet_name\": \"Wan2.2-T2V-A14B-HighNoise-Q4_K_M.gguf\"\n },\n \"class_type\": \"UnetLoaderGGUF\",\n \"_meta\": {\n \"title\": \"Unet Loader (GGUF)\"\n }\n },\n \"47\": {\n \"inputs\": {\n \"shift\": 8.000000000000002,\n \"model\": [\n \"50\",\n 0\n ]\n },\n \"class_type\": \"ModelSamplingSD3\",\n \"_meta\": {\n \"title\": \"ModelSamplingSD3\"\n }\n },\n \"48\": {\n \"inputs\": {\n \"shift\": 8.000000000000002,\n \"model\": [\n \"51\",\n 0\n ]\n },\n \"class_type\": \"ModelSamplingSD3\",\n \"_meta\": {\n \"title\": \"ModelSamplingSD3\"\n }\n },\n \"49\": {\n \"inputs\": {\n \"unet_name\": \"Wan2.2-T2V-A14B-LowNoise-Q4_K_M.gguf\"\n },\n \"class_type\": \"UnetLoaderGGUF\",\n \"_meta\": {\n \"title\": \"Unet Loader (GGUF)\"\n }\n },\n \"50\": {\n \"inputs\": {\n \"lora_name\": \"lightx2v_T2V_14B_cfg_step_distill_v2_lora_rank64_bf16.safetensors\",\n \"strength_model\": 1.0000000000000002,\n \"model\": [\n \"58\",\n 0\n ]\n },\n \"class_type\": \"LoraLoaderModelOnly\",\n \"_meta\": {\n \"title\": \"LoraLoaderModelOnly\"\n }\n },\n \"51\": {\n \"inputs\": {\n \"lora_name\": \"lightx2v_T2V_14B_cfg_step_distill_v2_lora_rank64_bf16.safetensors\",\n \"strength_model\": 1.0000000000000002,\n \"model\": [\n \"59\",\n 0\n ]\n },\n \"class_type\": \"LoraLoaderModelOnly\",\n \"_meta\": {\n \"title\": \"LoraLoaderModelOnly\"\n }\n },\n \"58\": {\n \"inputs\": {\n \"lora_name\": \"Wan2.1_T2V_14B_FusionX_LoRA.safetensors\",\n \"strength_model\": 0.5000000000000001,\n \"model\": [\n \"46\",\n 0\n ]\n },\n \"class_type\": \"LoraLoaderModelOnly\",\n \"_meta\": {\n \"title\": \"LoraLoaderModelOnly\"\n }\n },\n \"59\": {\n \"inputs\": {\n \"lora_name\": \"Wan2.1_T2V_14B_FusionX_LoRA.safetensors\",\n \"strength_model\": 0.5000000000000001,\n \"model\": [\n \"49\",\n 0\n ]\n },\n \"class_type\": \"LoraLoaderModelOnly\",\n \"_meta\": {\n \"title\": \"LoraLoaderModelOnly\"\n }\n },\n \"64\": {\n \"inputs\": {\n \"frame_rate\": 8,\n \"loop_count\": 0,\n \"filename_prefix\": \"AnimateDiff\",\n \"format\": \"video/h264-mp4\",\n \"pix_fmt\": \"yuv420p\",\n \"crf\": 19,\n \"save_metadata\": true,\n \"trim_to_audio\": false,\n \"pingpong\": false,\n \"save_output\": true,\n \"images\": [\n \"71\",\n 0\n ]\n },\n \"class_type\": \"VHS_VideoCombine\",\n \"_meta\": {\n \"title\": \"Video Combine \ud83c\udfa5\ud83c\udd65\ud83c\udd57\ud83c\udd62\"\n }\n },\n \"65\": {\n \"inputs\": {\n \"tile_size\": 512,\n \"overlap\": 64,\n \"temporal_size\": 64,\n \"temporal_overlap\": 8,\n \"samples\": [\n \"44\",\n 0\n ],\n \"vae\": [\n \"14\",\n 0\n ]\n },\n \"class_type\": \"VAEDecodeTiled\",\n \"_meta\": {\n \"title\": \"VAE Decode (Tiled)\"\n }\n },\n \"69\": {\n \"inputs\": {\n \"upscale_model\": [\n \"70\",\n 0\n ],\n \"image\": [\n \"65\",\n 0\n ]\n },\n \"class_type\": \"ImageUpscaleWithModel\",\n \"_meta\": {\n \"title\": \"Upscale Image (using Model)\"\n }\n },\n \"70\": {\n \"inputs\": {\n \"model_name\": \"RealESRGAN_x2.pth\"\n },\n \"class_type\": \"UpscaleModelLoader\",\n \"_meta\": {\n \"title\": \"Load Upscale Model\"\n }\n },\n \"71\": {\n \"inputs\": {\n \"ckpt_name\": \"rife47.pth\",\n \"clear_cache_after_n_frames\": 10,\n \"multiplier\": 2,\n \"fast_mode\": true,\n \"ensemble\": true,\n \"scale_factor\": 1,\n \"frames\": [\n \"69\",\n 0\n ]\n },\n \"class_type\": \"RIFE VFI\",\n \"_meta\": {\n \"title\": \"RIFE VFI (recommend rife47 and rife49)\"\n }\n },\n \"73\": {\n \"inputs\": {\n \"width\": 384,\n \"height\": 704,\n \"length\": 41,\n \"batch_size\": 1,\n \"vae\": [\n \"14\",\n 0\n ]\n },\n \"class_type\": \"Wan22ImageToVideoLatent\",\n \"_meta\": {\n \"title\": \"Wan22ImageToVideoLatent\"\n }\n }\n}",
"x-order": 1,
"description": "Your ComfyUI workflow as JSON string or URL. Default: WAN2.2 text-to-video workflow. Get API format from ComfyUI using 'Save (API format)'. Instructions: https://github.com/replicate/cog-comfyui"
},
"output_quality": {
"type": "integer",
"title": "Output Quality",
"default": 95,
"maximum": 100,
"minimum": 0,
"x-order": 5,
"description": "Quality of the output images, from 0 to 100. 100 is best quality, 0 is lowest quality."
},
"randomise_seeds": {
"type": "boolean",
"title": "Randomise Seeds",
"default": true,
"x-order": 6,
"description": "Automatically randomise seeds (seed, noise_seed, rand_seed)"
},
"force_reset_cache": {
"type": "boolean",
"title": "Force Reset Cache",
"default": false,
"x-order": 7,
"description": "Force reset the ComfyUI cache before running the workflow. Useful for debugging."
},
"return_temp_files": {
"type": "boolean",
"title": "Return Temp Files",
"default": false,
"x-order": 3,
"description": "Return any temporary files, such as preprocessed controlnet images. Useful for debugging."
}
}
}
Output schema
The shape of the response you’ll get when you run this model with an API.
Schema
{
"type": "array",
"items": {
"type": "string",
"format": "uri"
},
"title": "Output"
}