You're looking at a specific version of this model. Jump to the model overview.

expa-ai /cloudflare-hack:1643cc69

Input schema

The fields you can use to run this model with an API. If you don’t give a value for a field its default value will be used.

Field Type Default value Description
prompt
string
An astronaut riding a rainbow unicorn
Input prompt
negative_prompt
string
Negative Prompt
segment_human
boolean
False
Segment human from original photo as preprocessing.
image
string
Input image for img2img
width
integer
768
Width of output image
height
integer
768
Height of output image
sizing_strategy
string (enum)
input_image

Options:

width_height, input_image, controlnet_1_image, controlnet_2_image, controlnet_3_image, mask_image

Decide how to resize images – use width/height, resize based on input image or control image
num_outputs
integer
1

Min: 1

Max: 4

Number of images to output
scheduler
string (enum)
K_EULER

Options:

DDIM, DPMSolverMultistep, HeunDiscrete, KarrasDPM, K_EULER_ANCESTRAL, K_EULER, PNDM

scheduler
num_inference_steps
integer
30

Min: 1

Max: 500

Number of denoising steps
guidance_scale
number
7.5

Min: 1

Max: 50

Scale for classifier-free guidance
prompt_strength
number
0.8

Max: 1

Prompt strength when using img2img / inpaint. 1.0 corresponds to full destruction of information in image
seed
integer
Random seed. Leave blank to randomize the seed
refine
string (enum)
no_refiner

Options:

no_refiner, base_image_refiner

Which refine style to use
refine_steps
integer
For base_image_refiner, the number of steps to refine, defaults to num_inference_steps
apply_watermark
boolean
True
Applies a watermark to enable determining if an image is generated in downstream applications. If you have other provisions for generating or deploying images safely, you can use this to disable watermarking.
lora_scale
number
0.6

Max: 1

LoRA additive scale. Only applicable on trained models.
lora_weights
string
Replicate LoRA weights to use. Leave blank to use the default weights.
upscale
boolean
True
Enable tile upscale.
upscale_steps
integer
For the number of steps to upscale, defaults to num_inference_steps
hdr
number
0

Max: 1

HDR improvement over the original image
apply_brand_bg
boolean
True
Applies a brand background.
controlnet_1
string (enum)
none

Options:

none, edge_canny, illusion, depth_leres, depth_midas, soft_edge_pidi, soft_edge_hed, lineart, lineart_anime, openpose, segment_animeface_v2

Controlnet
controlnet_1_image
string
Input image for first controlnet
controlnet_1_conditioning_scale
number
0.75

Max: 4

How strong the controlnet conditioning is
controlnet_1_start
number
0

Max: 1

When controlnet conditioning starts
controlnet_1_end
number
1

Max: 1

When controlnet conditioning ends
controlnet_2
string (enum)
none

Options:

none, edge_canny, illusion, depth_leres, depth_midas, soft_edge_pidi, soft_edge_hed, lineart, lineart_anime, openpose, segment_animeface_v2

Controlnet
controlnet_2_image
string
Input image for second controlnet
controlnet_2_conditioning_scale
number
0.75

Max: 4

How strong the controlnet conditioning is
controlnet_2_start
number
0

Max: 1

When controlnet conditioning starts
controlnet_2_end
number
1

Max: 1

When controlnet conditioning ends
controlnet_3
string (enum)
none

Options:

none, edge_canny, illusion, depth_leres, depth_midas, soft_edge_pidi, soft_edge_hed, lineart, lineart_anime, openpose, segment_animeface_v2

Controlnet
controlnet_3_image
string
Input image for third controlnet
controlnet_3_conditioning_scale
number
0.75

Max: 4

How strong the controlnet conditioning is
controlnet_3_start
number
0

Max: 1

When controlnet conditioning starts
controlnet_3_end
number
1

Max: 1

When controlnet conditioning ends

Output schema

The shape of the response you’ll get when you run this model with an API.

Schema
{'items': {'format': 'uri', 'type': 'string'},
 'title': 'Output',
 'type': 'array'}