You're looking at a specific version of this model. Jump to the model overview.
expa-ai /cloudflare-hack:f1fe27a0
Input schema
The fields you can use to run this model with an API. If you don’t give a value for a field its default value will be used.
Field | Type | Default value | Description |
---|---|---|---|
prompt |
string
|
An astronaut riding a rainbow unicorn
|
Input prompt
|
negative_prompt |
string
|
|
Negative Prompt
|
segment_human |
boolean
|
False
|
Segment human from original photo as preprocessing.
|
image |
string
|
Input image for img2img
|
|
width |
integer
|
768
|
Width of output image
|
height |
integer
|
768
|
Height of output image
|
sizing_strategy |
string
(enum)
|
input_image
Options: width_height, input_image, controlnet_1_image, controlnet_2_image, controlnet_3_image, mask_image |
Decide how to resize images – use width/height, resize based on input image or control image
|
num_outputs |
integer
|
1
Min: 1 Max: 4 |
Number of images to output
|
scheduler |
string
(enum)
|
K_EULER
Options: DDIM, DPMSolverMultistep, HeunDiscrete, KarrasDPM, K_EULER_ANCESTRAL, K_EULER, PNDM |
scheduler
|
num_inference_steps |
integer
|
30
Min: 1 Max: 500 |
Number of denoising steps
|
guidance_scale |
number
|
7.5
Min: 1 Max: 50 |
Scale for classifier-free guidance
|
prompt_strength |
number
|
0.8
Max: 1 |
Prompt strength when using img2img / inpaint. 1.0 corresponds to full destruction of information in image
|
seed |
integer
|
Random seed. Leave blank to randomize the seed
|
|
refine |
string
(enum)
|
no_refiner
Options: no_refiner, base_image_refiner |
Which refine style to use
|
refine_steps |
integer
|
For base_image_refiner, the number of steps to refine, defaults to num_inference_steps
|
|
apply_watermark |
boolean
|
True
|
Applies a watermark to enable determining if an image is generated in downstream applications. If you have other provisions for generating or deploying images safely, you can use this to disable watermarking.
|
lora_scale |
number
|
0.6
Max: 1 |
LoRA additive scale. Only applicable on trained models.
|
lora_weights |
string
|
Replicate LoRA weights to use. Leave blank to use the default weights.
|
|
apply_brand_bg |
boolean
|
True
|
Applies a brand background.
|
controlnet_1 |
string
(enum)
|
none
Options: none, edge_canny, illusion, depth_leres, depth_midas, soft_edge_pidi, soft_edge_hed, lineart, lineart_anime, openpose |
Controlnet
|
controlnet_1_image |
string
|
Input image for first controlnet
|
|
controlnet_1_conditioning_scale |
number
|
0.75
Max: 4 |
How strong the controlnet conditioning is
|
controlnet_1_start |
number
|
0
Max: 1 |
When controlnet conditioning starts
|
controlnet_1_end |
number
|
1
Max: 1 |
When controlnet conditioning ends
|
controlnet_2 |
string
(enum)
|
none
Options: none, edge_canny, illusion, depth_leres, depth_midas, soft_edge_pidi, soft_edge_hed, lineart, lineart_anime, openpose |
Controlnet
|
controlnet_2_image |
string
|
Input image for second controlnet
|
|
controlnet_2_conditioning_scale |
number
|
0.75
Max: 4 |
How strong the controlnet conditioning is
|
controlnet_2_start |
number
|
0
Max: 1 |
When controlnet conditioning starts
|
controlnet_2_end |
number
|
1
Max: 1 |
When controlnet conditioning ends
|
controlnet_3 |
string
(enum)
|
none
Options: none, edge_canny, illusion, depth_leres, depth_midas, soft_edge_pidi, soft_edge_hed, lineart, lineart_anime, openpose |
Controlnet
|
controlnet_3_image |
string
|
Input image for third controlnet
|
|
controlnet_3_conditioning_scale |
number
|
0.75
Max: 4 |
How strong the controlnet conditioning is
|
controlnet_3_start |
number
|
0
Max: 1 |
When controlnet conditioning starts
|
controlnet_3_end |
number
|
1
Max: 1 |
When controlnet conditioning ends
|
Output schema
The shape of the response you’ll get when you run this model with an API.
{'items': {'format': 'uri', 'type': 'string'},
'title': 'Output',
'type': 'array'}