Readme
This model doesn't have a readme.
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run faraz2023/andreas-feininger2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"faraz2023/andreas-feininger2:c281f81e1840b5f84f30dcfd471a9df88855fe86d66a606ce6917963e6cd6bd4",
{
input: {
seed: 340234,
width: 2048,
height: 2048,
prompt: "In style of andreas feininger, a large blooming red rose in the middle of gloomy city. The flower is one connected plant. \n",
refine: "expert_ensemble_refiner",
scheduler: "K_EULER",
lora_scale: 0.6,
num_outputs: 1,
refine_steps: null,
guidance_scale: 9.47,
apply_watermark: false,
high_noise_frac: 0.77,
negative_prompt: "disconnected iterm; ugly; low-quality",
prompt_strength: 0.8,
num_inference_steps: 114
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run faraz2023/andreas-feininger2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"faraz2023/andreas-feininger2:c281f81e1840b5f84f30dcfd471a9df88855fe86d66a606ce6917963e6cd6bd4",
input={
"seed": 340234,
"width": 2048,
"height": 2048,
"prompt": "In style of andreas feininger, a large blooming red rose in the middle of gloomy city. The flower is one connected plant. \n",
"refine": "expert_ensemble_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"refine_steps": null,
"guidance_scale": 9.47,
"apply_watermark": False,
"high_noise_frac": 0.77,
"negative_prompt": "disconnected iterm; ugly; low-quality",
"prompt_strength": 0.8,
"num_inference_steps": 114
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run faraz2023/andreas-feininger2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "faraz2023/andreas-feininger2:c281f81e1840b5f84f30dcfd471a9df88855fe86d66a606ce6917963e6cd6bd4",
"input": {
"seed": 340234,
"width": 2048,
"height": 2048,
"prompt": "In style of andreas feininger, a large blooming red rose in the middle of gloomy city. The flower is one connected plant. \\n",
"refine": "expert_ensemble_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"refine_steps": null,
"guidance_scale": 9.47,
"apply_watermark": false,
"high_noise_frac": 0.77,
"negative_prompt": "disconnected iterm; ugly; low-quality",
"prompt_strength": 0.8,
"num_inference_steps": 114
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2023-10-10T21:53:04.546496Z",
"created_at": "2023-10-10T21:50:46.431928Z",
"data_removed": false,
"error": null,
"id": "gokuok3bcjagn6us2r2vf4452y",
"input": {
"seed": 340234,
"image": null,
"width": 2048,
"height": 2048,
"prompt": "In style of andreas feininger, a large blooming red rose in the middle of gloomy city. The flower is one connected plant. \n",
"refine": "expert_ensemble_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"refine_steps": null,
"guidance_scale": 9.47,
"apply_watermark": false,
"high_noise_frac": 0.77,
"negative_prompt": "disconnected iterm; ugly; low-quality",
"prompt_strength": 0.8,
"num_inference_steps": 114
},
"logs": "Using seed: 340234\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: In style of andreas feininger, a large blooming red rose in the middle of gloomy city. The flower is one connected plant.\ntxt2img mode\n 0%| | 0/66 [00:00<?, ?it/s]\n 2%|▏ | 1/66 [00:01<01:29, 1.38s/it]\n 3%|▎ | 2/66 [00:02<01:28, 1.38s/it]\n 5%|▍ | 3/66 [00:04<01:27, 1.38s/it]\n 6%|▌ | 4/66 [00:05<01:25, 1.38s/it]\n 8%|▊ | 5/66 [00:06<01:24, 1.39s/it]\n 9%|▉ | 6/66 [00:08<01:23, 1.39s/it]\n 11%|█ | 7/66 [00:09<01:21, 1.39s/it]\n 12%|█▏ | 8/66 [00:11<01:20, 1.39s/it]\n 14%|█▎ | 9/66 [00:12<01:18, 1.38s/it]\n 15%|█▌ | 10/66 [00:13<01:17, 1.38s/it]\n 17%|█▋ | 11/66 [00:15<01:16, 1.39s/it]\n 18%|█▊ | 12/66 [00:16<01:14, 1.38s/it]\n 20%|█▉ | 13/66 [00:18<01:13, 1.39s/it]\n 21%|██ | 14/66 [00:19<01:12, 1.39s/it]\n 23%|██▎ | 15/66 [00:20<01:10, 1.39s/it]\n 24%|██▍ | 16/66 [00:22<01:09, 1.39s/it]\n 26%|██▌ | 17/66 [00:23<01:08, 1.39s/it]\n 27%|██▋ | 18/66 [00:24<01:06, 1.39s/it]\n 29%|██▉ | 19/66 [00:26<01:05, 1.39s/it]\n 30%|███ | 20/66 [00:27<01:03, 1.39s/it]\n 32%|███▏ | 21/66 [00:29<01:02, 1.39s/it]\n 33%|███▎ | 22/66 [00:30<01:01, 1.39s/it]\n 35%|███▍ | 23/66 [00:31<00:59, 1.39s/it]\n 36%|███▋ | 24/66 [00:33<00:58, 1.39s/it]\n 38%|███▊ | 25/66 [00:34<00:56, 1.39s/it]\n 39%|███▉ | 26/66 [00:36<00:55, 1.39s/it]\n 41%|████ | 27/66 [00:37<00:54, 1.39s/it]\n 42%|████▏ | 28/66 [00:38<00:52, 1.39s/it]\n 44%|████▍ | 29/66 [00:40<00:51, 1.39s/it]\n 45%|████▌ | 30/66 [00:41<00:50, 1.39s/it]\n 47%|████▋ | 31/66 [00:43<00:48, 1.39s/it]\n 48%|████▊ | 32/66 [00:44<00:47, 1.39s/it]\n 50%|█████ | 33/66 [00:45<00:45, 1.39s/it]\n 52%|█████▏ | 34/66 [00:47<00:44, 1.39s/it]\n 53%|█████▎ | 35/66 [00:48<00:43, 1.39s/it]\n 55%|█████▍ | 36/66 [00:49<00:41, 1.39s/it]\n 56%|█████▌ | 37/66 [00:51<00:40, 1.39s/it]\n 58%|█████▊ | 38/66 [00:52<00:38, 1.39s/it]\n 59%|█████▉ | 39/66 [00:54<00:37, 1.39s/it]\n 61%|██████ | 40/66 [00:55<00:36, 1.39s/it]\n 62%|██████▏ | 41/66 [00:56<00:34, 1.39s/it]\n 64%|██████▎ | 42/66 [00:58<00:33, 1.39s/it]\n 65%|██████▌ | 43/66 [00:59<00:32, 1.39s/it]\n 67%|██████▋ | 44/66 [01:01<00:30, 1.39s/it]\n 68%|██████▊ | 45/66 [01:02<00:29, 1.39s/it]\n 70%|██████▉ | 46/66 [01:03<00:27, 1.39s/it]\n 71%|███████ | 47/66 [01:05<00:26, 1.39s/it]\n 73%|███████▎ | 48/66 [01:06<00:25, 1.39s/it]\n 74%|███████▍ | 49/66 [01:08<00:23, 1.39s/it]\n 76%|███████▌ | 50/66 [01:09<00:22, 1.39s/it]\n 77%|███████▋ | 51/66 [01:10<00:20, 1.39s/it]\n 79%|███████▉ | 52/66 [01:12<00:19, 1.39s/it]\n 80%|████████ | 53/66 [01:13<00:18, 1.39s/it]\n 82%|████████▏ | 54/66 [01:15<00:16, 1.39s/it]\n 83%|████████▎ | 55/66 [01:16<00:15, 1.39s/it]\n 85%|████████▍ | 56/66 [01:17<00:13, 1.39s/it]\n 86%|████████▋ | 57/66 [01:19<00:12, 1.39s/it]\n 88%|████████▊ | 58/66 [01:20<00:11, 1.40s/it]\n 89%|████████▉ | 59/66 [01:22<00:09, 1.39s/it]\n 91%|█████████ | 60/66 [01:23<00:08, 1.40s/it]\n 92%|█████████▏| 61/66 [01:24<00:06, 1.39s/it]\n 94%|█████████▍| 62/66 [01:26<00:05, 1.40s/it]\n 95%|█████████▌| 63/66 [01:27<00:04, 1.39s/it]\n 97%|█████████▋| 64/66 [01:29<00:02, 1.39s/it]\n 98%|█████████▊| 65/66 [01:30<00:01, 1.39s/it]\n100%|██████████| 66/66 [01:31<00:00, 1.40s/it]\n100%|██████████| 66/66 [01:31<00:00, 1.39s/it]\n 0%| | 0/29 [00:00<?, ?it/s]\n 3%|▎ | 1/29 [00:01<00:39, 1.41s/it]\n 7%|▋ | 2/29 [00:02<00:38, 1.42s/it]\n 10%|█ | 3/29 [00:04<00:36, 1.42s/it]\n 14%|█▍ | 4/29 [00:05<00:35, 1.41s/it]\n 17%|█▋ | 5/29 [00:07<00:33, 1.42s/it]\n 21%|██ | 6/29 [00:08<00:32, 1.42s/it]\n 24%|██▍ | 7/29 [00:09<00:31, 1.41s/it]\n 28%|██▊ | 8/29 [00:11<00:29, 1.41s/it]\n 31%|███ | 9/29 [00:12<00:28, 1.41s/it]\n 34%|███▍ | 10/29 [00:14<00:26, 1.41s/it]\n 38%|███▊ | 11/29 [00:15<00:25, 1.41s/it]\n 41%|████▏ | 12/29 [00:16<00:24, 1.41s/it]\n 45%|████▍ | 13/29 [00:18<00:22, 1.41s/it]\n 48%|████▊ | 14/29 [00:19<00:21, 1.41s/it]\n 52%|█████▏ | 15/29 [00:21<00:19, 1.42s/it]\n 55%|█████▌ | 16/29 [00:22<00:18, 1.42s/it]\n 59%|█████▊ | 17/29 [00:24<00:17, 1.42s/it]\n 62%|██████▏ | 18/29 [00:25<00:15, 1.42s/it]\n 66%|██████▌ | 19/29 [00:26<00:14, 1.42s/it]\n 69%|██████▉ | 20/29 [00:28<00:12, 1.42s/it]\n 72%|███████▏ | 21/29 [00:29<00:11, 1.42s/it]\n 76%|███████▌ | 22/29 [00:31<00:09, 1.42s/it]\n 79%|███████▉ | 23/29 [00:32<00:08, 1.42s/it]\n 83%|████████▎ | 24/29 [00:33<00:07, 1.42s/it]\n 86%|████████▌ | 25/29 [00:35<00:05, 1.42s/it]\n 90%|████████▉ | 26/29 [00:36<00:04, 1.42s/it]\n 93%|█████████▎| 27/29 [00:38<00:02, 1.42s/it]\n 97%|█████████▋| 28/29 [00:39<00:01, 1.42s/it]\n100%|██████████| 29/29 [00:41<00:00, 1.42s/it]\n100%|██████████| 29/29 [00:41<00:00, 1.42s/it]",
"metrics": {
"predict_time": 137.478891,
"total_time": 138.114568
},
"output": [
"https://pbxt.replicate.delivery/dOOeuOKt0kVwUiaEPNcxu0dRJV4gJOxJv2JS08mpoKofm3sRA/out-0.png"
],
"started_at": "2023-10-10T21:50:47.067605Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/gokuok3bcjagn6us2r2vf4452y",
"cancel": "https://api.replicate.com/v1/predictions/gokuok3bcjagn6us2r2vf4452y/cancel"
},
"version": "c281f81e1840b5f84f30dcfd471a9df88855fe86d66a606ce6917963e6cd6bd4"
}
Using seed: 340234
Loading fine-tuned model
Does not have Unet. assume we are using LoRA
Loading Unet LoRA
Prompt: In style of andreas feininger, a large blooming red rose in the middle of gloomy city. The flower is one connected plant.
txt2img mode
0%| | 0/66 [00:00<?, ?it/s]
2%|▏ | 1/66 [00:01<01:29, 1.38s/it]
3%|▎ | 2/66 [00:02<01:28, 1.38s/it]
5%|▍ | 3/66 [00:04<01:27, 1.38s/it]
6%|▌ | 4/66 [00:05<01:25, 1.38s/it]
8%|▊ | 5/66 [00:06<01:24, 1.39s/it]
9%|▉ | 6/66 [00:08<01:23, 1.39s/it]
11%|█ | 7/66 [00:09<01:21, 1.39s/it]
12%|█▏ | 8/66 [00:11<01:20, 1.39s/it]
14%|█▎ | 9/66 [00:12<01:18, 1.38s/it]
15%|█▌ | 10/66 [00:13<01:17, 1.38s/it]
17%|█▋ | 11/66 [00:15<01:16, 1.39s/it]
18%|█▊ | 12/66 [00:16<01:14, 1.38s/it]
20%|█▉ | 13/66 [00:18<01:13, 1.39s/it]
21%|██ | 14/66 [00:19<01:12, 1.39s/it]
23%|██▎ | 15/66 [00:20<01:10, 1.39s/it]
24%|██▍ | 16/66 [00:22<01:09, 1.39s/it]
26%|██▌ | 17/66 [00:23<01:08, 1.39s/it]
27%|██▋ | 18/66 [00:24<01:06, 1.39s/it]
29%|██▉ | 19/66 [00:26<01:05, 1.39s/it]
30%|███ | 20/66 [00:27<01:03, 1.39s/it]
32%|███▏ | 21/66 [00:29<01:02, 1.39s/it]
33%|███▎ | 22/66 [00:30<01:01, 1.39s/it]
35%|███▍ | 23/66 [00:31<00:59, 1.39s/it]
36%|███▋ | 24/66 [00:33<00:58, 1.39s/it]
38%|███▊ | 25/66 [00:34<00:56, 1.39s/it]
39%|███▉ | 26/66 [00:36<00:55, 1.39s/it]
41%|████ | 27/66 [00:37<00:54, 1.39s/it]
42%|████▏ | 28/66 [00:38<00:52, 1.39s/it]
44%|████▍ | 29/66 [00:40<00:51, 1.39s/it]
45%|████▌ | 30/66 [00:41<00:50, 1.39s/it]
47%|████▋ | 31/66 [00:43<00:48, 1.39s/it]
48%|████▊ | 32/66 [00:44<00:47, 1.39s/it]
50%|█████ | 33/66 [00:45<00:45, 1.39s/it]
52%|█████▏ | 34/66 [00:47<00:44, 1.39s/it]
53%|█████▎ | 35/66 [00:48<00:43, 1.39s/it]
55%|█████▍ | 36/66 [00:49<00:41, 1.39s/it]
56%|█████▌ | 37/66 [00:51<00:40, 1.39s/it]
58%|█████▊ | 38/66 [00:52<00:38, 1.39s/it]
59%|█████▉ | 39/66 [00:54<00:37, 1.39s/it]
61%|██████ | 40/66 [00:55<00:36, 1.39s/it]
62%|██████▏ | 41/66 [00:56<00:34, 1.39s/it]
64%|██████▎ | 42/66 [00:58<00:33, 1.39s/it]
65%|██████▌ | 43/66 [00:59<00:32, 1.39s/it]
67%|██████▋ | 44/66 [01:01<00:30, 1.39s/it]
68%|██████▊ | 45/66 [01:02<00:29, 1.39s/it]
70%|██████▉ | 46/66 [01:03<00:27, 1.39s/it]
71%|███████ | 47/66 [01:05<00:26, 1.39s/it]
73%|███████▎ | 48/66 [01:06<00:25, 1.39s/it]
74%|███████▍ | 49/66 [01:08<00:23, 1.39s/it]
76%|███████▌ | 50/66 [01:09<00:22, 1.39s/it]
77%|███████▋ | 51/66 [01:10<00:20, 1.39s/it]
79%|███████▉ | 52/66 [01:12<00:19, 1.39s/it]
80%|████████ | 53/66 [01:13<00:18, 1.39s/it]
82%|████████▏ | 54/66 [01:15<00:16, 1.39s/it]
83%|████████▎ | 55/66 [01:16<00:15, 1.39s/it]
85%|████████▍ | 56/66 [01:17<00:13, 1.39s/it]
86%|████████▋ | 57/66 [01:19<00:12, 1.39s/it]
88%|████████▊ | 58/66 [01:20<00:11, 1.40s/it]
89%|████████▉ | 59/66 [01:22<00:09, 1.39s/it]
91%|█████████ | 60/66 [01:23<00:08, 1.40s/it]
92%|█████████▏| 61/66 [01:24<00:06, 1.39s/it]
94%|█████████▍| 62/66 [01:26<00:05, 1.40s/it]
95%|█████████▌| 63/66 [01:27<00:04, 1.39s/it]
97%|█████████▋| 64/66 [01:29<00:02, 1.39s/it]
98%|█████████▊| 65/66 [01:30<00:01, 1.39s/it]
100%|██████████| 66/66 [01:31<00:00, 1.40s/it]
100%|██████████| 66/66 [01:31<00:00, 1.39s/it]
0%| | 0/29 [00:00<?, ?it/s]
3%|▎ | 1/29 [00:01<00:39, 1.41s/it]
7%|▋ | 2/29 [00:02<00:38, 1.42s/it]
10%|█ | 3/29 [00:04<00:36, 1.42s/it]
14%|█▍ | 4/29 [00:05<00:35, 1.41s/it]
17%|█▋ | 5/29 [00:07<00:33, 1.42s/it]
21%|██ | 6/29 [00:08<00:32, 1.42s/it]
24%|██▍ | 7/29 [00:09<00:31, 1.41s/it]
28%|██▊ | 8/29 [00:11<00:29, 1.41s/it]
31%|███ | 9/29 [00:12<00:28, 1.41s/it]
34%|███▍ | 10/29 [00:14<00:26, 1.41s/it]
38%|███▊ | 11/29 [00:15<00:25, 1.41s/it]
41%|████▏ | 12/29 [00:16<00:24, 1.41s/it]
45%|████▍ | 13/29 [00:18<00:22, 1.41s/it]
48%|████▊ | 14/29 [00:19<00:21, 1.41s/it]
52%|█████▏ | 15/29 [00:21<00:19, 1.42s/it]
55%|█████▌ | 16/29 [00:22<00:18, 1.42s/it]
59%|█████▊ | 17/29 [00:24<00:17, 1.42s/it]
62%|██████▏ | 18/29 [00:25<00:15, 1.42s/it]
66%|██████▌ | 19/29 [00:26<00:14, 1.42s/it]
69%|██████▉ | 20/29 [00:28<00:12, 1.42s/it]
72%|███████▏ | 21/29 [00:29<00:11, 1.42s/it]
76%|███████▌ | 22/29 [00:31<00:09, 1.42s/it]
79%|███████▉ | 23/29 [00:32<00:08, 1.42s/it]
83%|████████▎ | 24/29 [00:33<00:07, 1.42s/it]
86%|████████▌ | 25/29 [00:35<00:05, 1.42s/it]
90%|████████▉ | 26/29 [00:36<00:04, 1.42s/it]
93%|█████████▎| 27/29 [00:38<00:02, 1.42s/it]
97%|█████████▋| 28/29 [00:39<00:01, 1.42s/it]
100%|██████████| 29/29 [00:41<00:00, 1.42s/it]
100%|██████████| 29/29 [00:41<00:00, 1.42s/it]
This model costs approximately $0.034 to run on Replicate, or 29 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.
This model runs on Nvidia L40S GPU hardware. Predictions typically complete within 35 seconds. The predict time for this model varies significantly based on the inputs.
This model doesn't have a readme.
This model is warm. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
Using seed: 340234
Loading fine-tuned model
Does not have Unet. assume we are using LoRA
Loading Unet LoRA
Prompt: In style of andreas feininger, a large blooming red rose in the middle of gloomy city. The flower is one connected plant.
txt2img mode
0%| | 0/66 [00:00<?, ?it/s]
2%|▏ | 1/66 [00:01<01:29, 1.38s/it]
3%|▎ | 2/66 [00:02<01:28, 1.38s/it]
5%|▍ | 3/66 [00:04<01:27, 1.38s/it]
6%|▌ | 4/66 [00:05<01:25, 1.38s/it]
8%|▊ | 5/66 [00:06<01:24, 1.39s/it]
9%|▉ | 6/66 [00:08<01:23, 1.39s/it]
11%|█ | 7/66 [00:09<01:21, 1.39s/it]
12%|█▏ | 8/66 [00:11<01:20, 1.39s/it]
14%|█▎ | 9/66 [00:12<01:18, 1.38s/it]
15%|█▌ | 10/66 [00:13<01:17, 1.38s/it]
17%|█▋ | 11/66 [00:15<01:16, 1.39s/it]
18%|█▊ | 12/66 [00:16<01:14, 1.38s/it]
20%|█▉ | 13/66 [00:18<01:13, 1.39s/it]
21%|██ | 14/66 [00:19<01:12, 1.39s/it]
23%|██▎ | 15/66 [00:20<01:10, 1.39s/it]
24%|██▍ | 16/66 [00:22<01:09, 1.39s/it]
26%|██▌ | 17/66 [00:23<01:08, 1.39s/it]
27%|██▋ | 18/66 [00:24<01:06, 1.39s/it]
29%|██▉ | 19/66 [00:26<01:05, 1.39s/it]
30%|███ | 20/66 [00:27<01:03, 1.39s/it]
32%|███▏ | 21/66 [00:29<01:02, 1.39s/it]
33%|███▎ | 22/66 [00:30<01:01, 1.39s/it]
35%|███▍ | 23/66 [00:31<00:59, 1.39s/it]
36%|███▋ | 24/66 [00:33<00:58, 1.39s/it]
38%|███▊ | 25/66 [00:34<00:56, 1.39s/it]
39%|███▉ | 26/66 [00:36<00:55, 1.39s/it]
41%|████ | 27/66 [00:37<00:54, 1.39s/it]
42%|████▏ | 28/66 [00:38<00:52, 1.39s/it]
44%|████▍ | 29/66 [00:40<00:51, 1.39s/it]
45%|████▌ | 30/66 [00:41<00:50, 1.39s/it]
47%|████▋ | 31/66 [00:43<00:48, 1.39s/it]
48%|████▊ | 32/66 [00:44<00:47, 1.39s/it]
50%|█████ | 33/66 [00:45<00:45, 1.39s/it]
52%|█████▏ | 34/66 [00:47<00:44, 1.39s/it]
53%|█████▎ | 35/66 [00:48<00:43, 1.39s/it]
55%|█████▍ | 36/66 [00:49<00:41, 1.39s/it]
56%|█████▌ | 37/66 [00:51<00:40, 1.39s/it]
58%|█████▊ | 38/66 [00:52<00:38, 1.39s/it]
59%|█████▉ | 39/66 [00:54<00:37, 1.39s/it]
61%|██████ | 40/66 [00:55<00:36, 1.39s/it]
62%|██████▏ | 41/66 [00:56<00:34, 1.39s/it]
64%|██████▎ | 42/66 [00:58<00:33, 1.39s/it]
65%|██████▌ | 43/66 [00:59<00:32, 1.39s/it]
67%|██████▋ | 44/66 [01:01<00:30, 1.39s/it]
68%|██████▊ | 45/66 [01:02<00:29, 1.39s/it]
70%|██████▉ | 46/66 [01:03<00:27, 1.39s/it]
71%|███████ | 47/66 [01:05<00:26, 1.39s/it]
73%|███████▎ | 48/66 [01:06<00:25, 1.39s/it]
74%|███████▍ | 49/66 [01:08<00:23, 1.39s/it]
76%|███████▌ | 50/66 [01:09<00:22, 1.39s/it]
77%|███████▋ | 51/66 [01:10<00:20, 1.39s/it]
79%|███████▉ | 52/66 [01:12<00:19, 1.39s/it]
80%|████████ | 53/66 [01:13<00:18, 1.39s/it]
82%|████████▏ | 54/66 [01:15<00:16, 1.39s/it]
83%|████████▎ | 55/66 [01:16<00:15, 1.39s/it]
85%|████████▍ | 56/66 [01:17<00:13, 1.39s/it]
86%|████████▋ | 57/66 [01:19<00:12, 1.39s/it]
88%|████████▊ | 58/66 [01:20<00:11, 1.40s/it]
89%|████████▉ | 59/66 [01:22<00:09, 1.39s/it]
91%|█████████ | 60/66 [01:23<00:08, 1.40s/it]
92%|█████████▏| 61/66 [01:24<00:06, 1.39s/it]
94%|█████████▍| 62/66 [01:26<00:05, 1.40s/it]
95%|█████████▌| 63/66 [01:27<00:04, 1.39s/it]
97%|█████████▋| 64/66 [01:29<00:02, 1.39s/it]
98%|█████████▊| 65/66 [01:30<00:01, 1.39s/it]
100%|██████████| 66/66 [01:31<00:00, 1.40s/it]
100%|██████████| 66/66 [01:31<00:00, 1.39s/it]
0%| | 0/29 [00:00<?, ?it/s]
3%|▎ | 1/29 [00:01<00:39, 1.41s/it]
7%|▋ | 2/29 [00:02<00:38, 1.42s/it]
10%|█ | 3/29 [00:04<00:36, 1.42s/it]
14%|█▍ | 4/29 [00:05<00:35, 1.41s/it]
17%|█▋ | 5/29 [00:07<00:33, 1.42s/it]
21%|██ | 6/29 [00:08<00:32, 1.42s/it]
24%|██▍ | 7/29 [00:09<00:31, 1.41s/it]
28%|██▊ | 8/29 [00:11<00:29, 1.41s/it]
31%|███ | 9/29 [00:12<00:28, 1.41s/it]
34%|███▍ | 10/29 [00:14<00:26, 1.41s/it]
38%|███▊ | 11/29 [00:15<00:25, 1.41s/it]
41%|████▏ | 12/29 [00:16<00:24, 1.41s/it]
45%|████▍ | 13/29 [00:18<00:22, 1.41s/it]
48%|████▊ | 14/29 [00:19<00:21, 1.41s/it]
52%|█████▏ | 15/29 [00:21<00:19, 1.42s/it]
55%|█████▌ | 16/29 [00:22<00:18, 1.42s/it]
59%|█████▊ | 17/29 [00:24<00:17, 1.42s/it]
62%|██████▏ | 18/29 [00:25<00:15, 1.42s/it]
66%|██████▌ | 19/29 [00:26<00:14, 1.42s/it]
69%|██████▉ | 20/29 [00:28<00:12, 1.42s/it]
72%|███████▏ | 21/29 [00:29<00:11, 1.42s/it]
76%|███████▌ | 22/29 [00:31<00:09, 1.42s/it]
79%|███████▉ | 23/29 [00:32<00:08, 1.42s/it]
83%|████████▎ | 24/29 [00:33<00:07, 1.42s/it]
86%|████████▌ | 25/29 [00:35<00:05, 1.42s/it]
90%|████████▉ | 26/29 [00:36<00:04, 1.42s/it]
93%|█████████▎| 27/29 [00:38<00:02, 1.42s/it]
97%|█████████▋| 28/29 [00:39<00:01, 1.42s/it]
100%|██████████| 29/29 [00:41<00:00, 1.42s/it]
100%|██████████| 29/29 [00:41<00:00, 1.42s/it]