Readme
This model doesn't have a readme.
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run felixyifeiwang/adventure-scene using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"felixyifeiwang/adventure-scene:a5ffef9d67cadc28e6f1706bc222e47092ad83fb978ea03600d2f7d3444fd271",
{
input: {
width: 1024,
height: 1024,
prompt: "a hand-drawn TOK fantasy game scene, a pink sunset",
refine: "no_refiner",
scheduler: "K_EULER",
lora_scale: 0.6,
num_outputs: 1,
guidance_scale: 7.5,
apply_watermark: true,
high_noise_frac: 0.8,
negative_prompt: "realistic, highly detailed, single color, messy, mutated, deformed, disfigured",
prompt_strength: 0.8,
num_inference_steps: 50
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run felixyifeiwang/adventure-scene using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"felixyifeiwang/adventure-scene:a5ffef9d67cadc28e6f1706bc222e47092ad83fb978ea03600d2f7d3444fd271",
input={
"width": 1024,
"height": 1024,
"prompt": "a hand-drawn TOK fantasy game scene, a pink sunset",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": True,
"high_noise_frac": 0.8,
"negative_prompt": "realistic, highly detailed, single color, messy, mutated, deformed, disfigured",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run felixyifeiwang/adventure-scene using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "felixyifeiwang/adventure-scene:a5ffef9d67cadc28e6f1706bc222e47092ad83fb978ea03600d2f7d3444fd271",
"input": {
"width": 1024,
"height": 1024,
"prompt": "a hand-drawn TOK fantasy game scene, a pink sunset",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "realistic, highly detailed, single color, messy, mutated, deformed, disfigured",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2024-07-23T02:00:25.799348Z",
"created_at": "2024-07-23T02:00:07.966000Z",
"data_removed": false,
"error": null,
"id": "5b6vn3203srgg0cgvn8tt0d75g",
"input": {
"width": 1024,
"height": 1024,
"prompt": "a hand-drawn TOK fantasy game scene, a pink sunset",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "realistic, highly detailed, single color, messy, mutated, deformed, disfigured",
"prompt_strength": 0.8,
"num_inference_steps": 50
},
"logs": "Using seed: 4296\nEnsuring enough disk space...\nFree disk space: 1475187236864\nDownloading weights: https://replicate.delivery/pbxt/9Zu5PZ18TGYRB51q7is7s16eVlne9mVc8RzOFQVe0ixfiqsMB/trained_model.tar\n2024-07-23T02:00:09Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/b0cc8b1895a558ce url=https://replicate.delivery/pbxt/9Zu5PZ18TGYRB51q7is7s16eVlne9mVc8RzOFQVe0ixfiqsMB/trained_model.tar\n2024-07-23T02:00:10Z | INFO | [ Complete ] dest=/src/weights-cache/b0cc8b1895a558ce size=\"186 MB\" total_elapsed=1.666s url=https://replicate.delivery/pbxt/9Zu5PZ18TGYRB51q7is7s16eVlne9mVc8RzOFQVe0ixfiqsMB/trained_model.tar\nb''\nDownloaded weights in 1.8074951171875 seconds\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: a hand-drawn <s0><s1> fantasy game scene, a pink sunset\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]/usr/local/lib/python3.9/site-packages/diffusers/models/attention_processor.py:1946: FutureWarning: `LoRAAttnProcessor2_0` is deprecated and will be removed in version 0.26.0. Make sure use AttnProcessor2_0 instead by settingLoRA layers to `self.{to_q,to_k,to_v,to_out[0]}.lora_layer` respectively. This will be done automatically when using `LoraLoaderMixin.load_lora_weights`\ndeprecate(\n 2%|▏ | 1/50 [00:00<00:11, 4.31it/s]\n 4%|▍ | 2/50 [00:00<00:11, 4.29it/s]\n 6%|▌ | 3/50 [00:00<00:10, 4.28it/s]\n 8%|▊ | 4/50 [00:00<00:10, 4.27it/s]\n 10%|█ | 5/50 [00:01<00:10, 4.26it/s]\n 12%|█▏ | 6/50 [00:01<00:10, 4.26it/s]\n 14%|█▍ | 7/50 [00:01<00:10, 4.26it/s]\n 16%|█▌ | 8/50 [00:01<00:09, 4.26it/s]\n 18%|█▊ | 9/50 [00:02<00:09, 4.26it/s]\n 20%|██ | 10/50 [00:02<00:09, 4.26it/s]\n 22%|██▏ | 11/50 [00:02<00:09, 4.26it/s]\n 24%|██▍ | 12/50 [00:02<00:08, 4.26it/s]\n 26%|██▌ | 13/50 [00:03<00:08, 4.27it/s]\n 28%|██▊ | 14/50 [00:03<00:08, 4.27it/s]\n 30%|███ | 15/50 [00:03<00:08, 4.27it/s]\n 32%|███▏ | 16/50 [00:03<00:07, 4.27it/s]\n 34%|███▍ | 17/50 [00:03<00:07, 4.27it/s]\n 36%|███▌ | 18/50 [00:04<00:07, 4.27it/s]\n 38%|███▊ | 19/50 [00:04<00:07, 4.27it/s]\n 40%|████ | 20/50 [00:04<00:07, 4.27it/s]\n 42%|████▏ | 21/50 [00:04<00:06, 4.27it/s]\n 44%|████▍ | 22/50 [00:05<00:06, 4.27it/s]\n 46%|████▌ | 23/50 [00:05<00:06, 4.27it/s]\n 48%|████▊ | 24/50 [00:05<00:06, 4.27it/s]\n 50%|█████ | 25/50 [00:05<00:05, 4.27it/s]\n 52%|█████▏ | 26/50 [00:06<00:05, 4.27it/s]\n 54%|█████▍ | 27/50 [00:06<00:05, 4.27it/s]\n 56%|█████▌ | 28/50 [00:06<00:05, 4.27it/s]\n 58%|█████▊ | 29/50 [00:06<00:04, 4.27it/s]\n 60%|██████ | 30/50 [00:07<00:04, 4.27it/s]\n 62%|██████▏ | 31/50 [00:07<00:04, 4.27it/s]\n 64%|██████▍ | 32/50 [00:07<00:04, 4.27it/s]\n 66%|██████▌ | 33/50 [00:07<00:03, 4.27it/s]\n 68%|██████▊ | 34/50 [00:07<00:03, 4.27it/s]\n 70%|███████ | 35/50 [00:08<00:03, 4.26it/s]\n 72%|███████▏ | 36/50 [00:08<00:03, 4.27it/s]\n 74%|███████▍ | 37/50 [00:08<00:03, 4.27it/s]\n 76%|███████▌ | 38/50 [00:08<00:02, 4.27it/s]\n 78%|███████▊ | 39/50 [00:09<00:02, 4.26it/s]\n 80%|████████ | 40/50 [00:09<00:02, 4.26it/s]\n 82%|████████▏ | 41/50 [00:09<00:02, 4.26it/s]\n 84%|████████▍ | 42/50 [00:09<00:01, 4.27it/s]\n 86%|████████▌ | 43/50 [00:10<00:01, 4.27it/s]\n 88%|████████▊ | 44/50 [00:10<00:01, 4.26it/s]\n 90%|█████████ | 45/50 [00:10<00:01, 4.26it/s]\n 92%|█████████▏| 46/50 [00:10<00:00, 4.26it/s]\n 94%|█████████▍| 47/50 [00:11<00:00, 4.26it/s]\n 96%|█████████▌| 48/50 [00:11<00:00, 4.26it/s]\n 98%|█████████▊| 49/50 [00:11<00:00, 4.26it/s]\n100%|██████████| 50/50 [00:11<00:00, 4.26it/s]\n100%|██████████| 50/50 [00:11<00:00, 4.27it/s]",
"metrics": {
"predict_time": 16.664277932,
"total_time": 17.833348
},
"output": [
"https://replicate.delivery/pbxt/Q4vGslJzEuaFJ9pLQ1i2vNREp5H1BkSDPMdbpyfTpRlcBmlJA/out-0.png"
],
"started_at": "2024-07-23T02:00:09.135070Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/5b6vn3203srgg0cgvn8tt0d75g",
"cancel": "https://api.replicate.com/v1/predictions/5b6vn3203srgg0cgvn8tt0d75g/cancel"
},
"version": "a5ffef9d67cadc28e6f1706bc222e47092ad83fb978ea03600d2f7d3444fd271"
}
Using seed: 4296
Ensuring enough disk space...
Free disk space: 1475187236864
Downloading weights: https://replicate.delivery/pbxt/9Zu5PZ18TGYRB51q7is7s16eVlne9mVc8RzOFQVe0ixfiqsMB/trained_model.tar
2024-07-23T02:00:09Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/b0cc8b1895a558ce url=https://replicate.delivery/pbxt/9Zu5PZ18TGYRB51q7is7s16eVlne9mVc8RzOFQVe0ixfiqsMB/trained_model.tar
2024-07-23T02:00:10Z | INFO | [ Complete ] dest=/src/weights-cache/b0cc8b1895a558ce size="186 MB" total_elapsed=1.666s url=https://replicate.delivery/pbxt/9Zu5PZ18TGYRB51q7is7s16eVlne9mVc8RzOFQVe0ixfiqsMB/trained_model.tar
b''
Downloaded weights in 1.8074951171875 seconds
Loading fine-tuned model
Does not have Unet. assume we are using LoRA
Loading Unet LoRA
Prompt: a hand-drawn <s0><s1> fantasy game scene, a pink sunset
txt2img mode
0%| | 0/50 [00:00<?, ?it/s]/usr/local/lib/python3.9/site-packages/diffusers/models/attention_processor.py:1946: FutureWarning: `LoRAAttnProcessor2_0` is deprecated and will be removed in version 0.26.0. Make sure use AttnProcessor2_0 instead by settingLoRA layers to `self.{to_q,to_k,to_v,to_out[0]}.lora_layer` respectively. This will be done automatically when using `LoraLoaderMixin.load_lora_weights`
deprecate(
2%|▏ | 1/50 [00:00<00:11, 4.31it/s]
4%|▍ | 2/50 [00:00<00:11, 4.29it/s]
6%|▌ | 3/50 [00:00<00:10, 4.28it/s]
8%|▊ | 4/50 [00:00<00:10, 4.27it/s]
10%|█ | 5/50 [00:01<00:10, 4.26it/s]
12%|█▏ | 6/50 [00:01<00:10, 4.26it/s]
14%|█▍ | 7/50 [00:01<00:10, 4.26it/s]
16%|█▌ | 8/50 [00:01<00:09, 4.26it/s]
18%|█▊ | 9/50 [00:02<00:09, 4.26it/s]
20%|██ | 10/50 [00:02<00:09, 4.26it/s]
22%|██▏ | 11/50 [00:02<00:09, 4.26it/s]
24%|██▍ | 12/50 [00:02<00:08, 4.26it/s]
26%|██▌ | 13/50 [00:03<00:08, 4.27it/s]
28%|██▊ | 14/50 [00:03<00:08, 4.27it/s]
30%|███ | 15/50 [00:03<00:08, 4.27it/s]
32%|███▏ | 16/50 [00:03<00:07, 4.27it/s]
34%|███▍ | 17/50 [00:03<00:07, 4.27it/s]
36%|███▌ | 18/50 [00:04<00:07, 4.27it/s]
38%|███▊ | 19/50 [00:04<00:07, 4.27it/s]
40%|████ | 20/50 [00:04<00:07, 4.27it/s]
42%|████▏ | 21/50 [00:04<00:06, 4.27it/s]
44%|████▍ | 22/50 [00:05<00:06, 4.27it/s]
46%|████▌ | 23/50 [00:05<00:06, 4.27it/s]
48%|████▊ | 24/50 [00:05<00:06, 4.27it/s]
50%|█████ | 25/50 [00:05<00:05, 4.27it/s]
52%|█████▏ | 26/50 [00:06<00:05, 4.27it/s]
54%|█████▍ | 27/50 [00:06<00:05, 4.27it/s]
56%|█████▌ | 28/50 [00:06<00:05, 4.27it/s]
58%|█████▊ | 29/50 [00:06<00:04, 4.27it/s]
60%|██████ | 30/50 [00:07<00:04, 4.27it/s]
62%|██████▏ | 31/50 [00:07<00:04, 4.27it/s]
64%|██████▍ | 32/50 [00:07<00:04, 4.27it/s]
66%|██████▌ | 33/50 [00:07<00:03, 4.27it/s]
68%|██████▊ | 34/50 [00:07<00:03, 4.27it/s]
70%|███████ | 35/50 [00:08<00:03, 4.26it/s]
72%|███████▏ | 36/50 [00:08<00:03, 4.27it/s]
74%|███████▍ | 37/50 [00:08<00:03, 4.27it/s]
76%|███████▌ | 38/50 [00:08<00:02, 4.27it/s]
78%|███████▊ | 39/50 [00:09<00:02, 4.26it/s]
80%|████████ | 40/50 [00:09<00:02, 4.26it/s]
82%|████████▏ | 41/50 [00:09<00:02, 4.26it/s]
84%|████████▍ | 42/50 [00:09<00:01, 4.27it/s]
86%|████████▌ | 43/50 [00:10<00:01, 4.27it/s]
88%|████████▊ | 44/50 [00:10<00:01, 4.26it/s]
90%|█████████ | 45/50 [00:10<00:01, 4.26it/s]
92%|█████████▏| 46/50 [00:10<00:00, 4.26it/s]
94%|█████████▍| 47/50 [00:11<00:00, 4.26it/s]
96%|█████████▌| 48/50 [00:11<00:00, 4.26it/s]
98%|█████████▊| 49/50 [00:11<00:00, 4.26it/s]
100%|██████████| 50/50 [00:11<00:00, 4.26it/s]
100%|██████████| 50/50 [00:11<00:00, 4.27it/s]
This model costs approximately $0.017 to run on Replicate, or 58 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.
This model runs on Nvidia L40S GPU hardware. Predictions typically complete within 18 seconds.
This model doesn't have a readme.
This model is cold. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
Using seed: 4296
Ensuring enough disk space...
Free disk space: 1475187236864
Downloading weights: https://replicate.delivery/pbxt/9Zu5PZ18TGYRB51q7is7s16eVlne9mVc8RzOFQVe0ixfiqsMB/trained_model.tar
2024-07-23T02:00:09Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/b0cc8b1895a558ce url=https://replicate.delivery/pbxt/9Zu5PZ18TGYRB51q7is7s16eVlne9mVc8RzOFQVe0ixfiqsMB/trained_model.tar
2024-07-23T02:00:10Z | INFO | [ Complete ] dest=/src/weights-cache/b0cc8b1895a558ce size="186 MB" total_elapsed=1.666s url=https://replicate.delivery/pbxt/9Zu5PZ18TGYRB51q7is7s16eVlne9mVc8RzOFQVe0ixfiqsMB/trained_model.tar
b''
Downloaded weights in 1.8074951171875 seconds
Loading fine-tuned model
Does not have Unet. assume we are using LoRA
Loading Unet LoRA
Prompt: a hand-drawn <s0><s1> fantasy game scene, a pink sunset
txt2img mode
0%| | 0/50 [00:00<?, ?it/s]/usr/local/lib/python3.9/site-packages/diffusers/models/attention_processor.py:1946: FutureWarning: `LoRAAttnProcessor2_0` is deprecated and will be removed in version 0.26.0. Make sure use AttnProcessor2_0 instead by settingLoRA layers to `self.{to_q,to_k,to_v,to_out[0]}.lora_layer` respectively. This will be done automatically when using `LoraLoaderMixin.load_lora_weights`
deprecate(
2%|▏ | 1/50 [00:00<00:11, 4.31it/s]
4%|▍ | 2/50 [00:00<00:11, 4.29it/s]
6%|▌ | 3/50 [00:00<00:10, 4.28it/s]
8%|▊ | 4/50 [00:00<00:10, 4.27it/s]
10%|█ | 5/50 [00:01<00:10, 4.26it/s]
12%|█▏ | 6/50 [00:01<00:10, 4.26it/s]
14%|█▍ | 7/50 [00:01<00:10, 4.26it/s]
16%|█▌ | 8/50 [00:01<00:09, 4.26it/s]
18%|█▊ | 9/50 [00:02<00:09, 4.26it/s]
20%|██ | 10/50 [00:02<00:09, 4.26it/s]
22%|██▏ | 11/50 [00:02<00:09, 4.26it/s]
24%|██▍ | 12/50 [00:02<00:08, 4.26it/s]
26%|██▌ | 13/50 [00:03<00:08, 4.27it/s]
28%|██▊ | 14/50 [00:03<00:08, 4.27it/s]
30%|███ | 15/50 [00:03<00:08, 4.27it/s]
32%|███▏ | 16/50 [00:03<00:07, 4.27it/s]
34%|███▍ | 17/50 [00:03<00:07, 4.27it/s]
36%|███▌ | 18/50 [00:04<00:07, 4.27it/s]
38%|███▊ | 19/50 [00:04<00:07, 4.27it/s]
40%|████ | 20/50 [00:04<00:07, 4.27it/s]
42%|████▏ | 21/50 [00:04<00:06, 4.27it/s]
44%|████▍ | 22/50 [00:05<00:06, 4.27it/s]
46%|████▌ | 23/50 [00:05<00:06, 4.27it/s]
48%|████▊ | 24/50 [00:05<00:06, 4.27it/s]
50%|█████ | 25/50 [00:05<00:05, 4.27it/s]
52%|█████▏ | 26/50 [00:06<00:05, 4.27it/s]
54%|█████▍ | 27/50 [00:06<00:05, 4.27it/s]
56%|█████▌ | 28/50 [00:06<00:05, 4.27it/s]
58%|█████▊ | 29/50 [00:06<00:04, 4.27it/s]
60%|██████ | 30/50 [00:07<00:04, 4.27it/s]
62%|██████▏ | 31/50 [00:07<00:04, 4.27it/s]
64%|██████▍ | 32/50 [00:07<00:04, 4.27it/s]
66%|██████▌ | 33/50 [00:07<00:03, 4.27it/s]
68%|██████▊ | 34/50 [00:07<00:03, 4.27it/s]
70%|███████ | 35/50 [00:08<00:03, 4.26it/s]
72%|███████▏ | 36/50 [00:08<00:03, 4.27it/s]
74%|███████▍ | 37/50 [00:08<00:03, 4.27it/s]
76%|███████▌ | 38/50 [00:08<00:02, 4.27it/s]
78%|███████▊ | 39/50 [00:09<00:02, 4.26it/s]
80%|████████ | 40/50 [00:09<00:02, 4.26it/s]
82%|████████▏ | 41/50 [00:09<00:02, 4.26it/s]
84%|████████▍ | 42/50 [00:09<00:01, 4.27it/s]
86%|████████▌ | 43/50 [00:10<00:01, 4.27it/s]
88%|████████▊ | 44/50 [00:10<00:01, 4.26it/s]
90%|█████████ | 45/50 [00:10<00:01, 4.26it/s]
92%|█████████▏| 46/50 [00:10<00:00, 4.26it/s]
94%|█████████▍| 47/50 [00:11<00:00, 4.26it/s]
96%|█████████▌| 48/50 [00:11<00:00, 4.26it/s]
98%|█████████▊| 49/50 [00:11<00:00, 4.26it/s]
100%|██████████| 50/50 [00:11<00:00, 4.26it/s]
100%|██████████| 50/50 [00:11<00:00, 4.27it/s]