Readme
High quality upscale from Fermat.app. Increase the creativity to encourage hallucination.
UPDATE: new upscaling algorithm for a much improved image quality. Fermat.app open-source implementation of an efficient ControlNet 1.1 tile for high-quality upscales. Increase the creativity to encourage hallucination.
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run fermatresearch/high-resolution-controlnet-tile using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"fermatresearch/high-resolution-controlnet-tile:8e6a54d7b2848c48dc741a109d3fb0ea2a7f554eb4becd39a25cc532536ea975",
{
input: {
hdr: 0,
image: "https://replicate.delivery/pbxt/LKnw8rSgafZf4IlAVyPhzpX1TpTVcyfRa1saoaoiSfUYZLiL/fermat_app_a_living_room_modern_and_minimalistic_39b5a58a-e05b-4281-ac24-e87435256333-1.webp",
steps: 8,
format: "jpg",
prompt: "a nordic livingroom, 4k interior photography, uhd",
scheduler: "DDIM",
creativity: 0.4,
guess_mode: false,
resolution: 2560,
resemblance: 0.85,
guidance_scale: 0,
negative_prompt: "Teeth, tooth, open mouth, longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, mutant",
lora_details_strength: -0.25,
lora_sharpness_strength: 0.75
}
}
);
// To access the file URL:
console.log(output.url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run fermatresearch/high-resolution-controlnet-tile using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"fermatresearch/high-resolution-controlnet-tile:8e6a54d7b2848c48dc741a109d3fb0ea2a7f554eb4becd39a25cc532536ea975",
input={
"hdr": 0,
"image": "https://replicate.delivery/pbxt/LKnw8rSgafZf4IlAVyPhzpX1TpTVcyfRa1saoaoiSfUYZLiL/fermat_app_a_living_room_modern_and_minimalistic_39b5a58a-e05b-4281-ac24-e87435256333-1.webp",
"steps": 8,
"format": "jpg",
"prompt": "a nordic livingroom, 4k interior photography, uhd",
"scheduler": "DDIM",
"creativity": 0.4,
"guess_mode": False,
"resolution": 2560,
"resemblance": 0.85,
"guidance_scale": 0,
"negative_prompt": "Teeth, tooth, open mouth, longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, mutant",
"lora_details_strength": -0.25,
"lora_sharpness_strength": 0.75
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run fermatresearch/high-resolution-controlnet-tile using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "8e6a54d7b2848c48dc741a109d3fb0ea2a7f554eb4becd39a25cc532536ea975",
"input": {
"hdr": 0,
"image": "https://replicate.delivery/pbxt/LKnw8rSgafZf4IlAVyPhzpX1TpTVcyfRa1saoaoiSfUYZLiL/fermat_app_a_living_room_modern_and_minimalistic_39b5a58a-e05b-4281-ac24-e87435256333-1.webp",
"steps": 8,
"format": "jpg",
"prompt": "a nordic livingroom, 4k interior photography, uhd",
"scheduler": "DDIM",
"creativity": 0.4,
"guess_mode": false,
"resolution": 2560,
"resemblance": 0.85,
"guidance_scale": 0,
"negative_prompt": "Teeth, tooth, open mouth, longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, mutant",
"lora_details_strength": -0.25,
"lora_sharpness_strength": 0.75
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/fermatresearch/high-resolution-controlnet-tile@sha256:8e6a54d7b2848c48dc741a109d3fb0ea2a7f554eb4becd39a25cc532536ea975 \
-i 'hdr=0' \
-i 'image="https://replicate.delivery/pbxt/LKnw8rSgafZf4IlAVyPhzpX1TpTVcyfRa1saoaoiSfUYZLiL/fermat_app_a_living_room_modern_and_minimalistic_39b5a58a-e05b-4281-ac24-e87435256333-1.webp"' \
-i 'steps=8' \
-i 'format="jpg"' \
-i 'prompt="a nordic livingroom, 4k interior photography, uhd"' \
-i 'scheduler="DDIM"' \
-i 'creativity=0.4' \
-i 'guess_mode=false' \
-i 'resolution=2560' \
-i 'resemblance=0.85' \
-i 'guidance_scale=0' \
-i 'negative_prompt="Teeth, tooth, open mouth, longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, mutant"' \
-i 'lora_details_strength=-0.25' \
-i 'lora_sharpness_strength=0.75'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/fermatresearch/high-resolution-controlnet-tile@sha256:8e6a54d7b2848c48dc741a109d3fb0ea2a7f554eb4becd39a25cc532536ea975
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "hdr": 0, "image": "https://replicate.delivery/pbxt/LKnw8rSgafZf4IlAVyPhzpX1TpTVcyfRa1saoaoiSfUYZLiL/fermat_app_a_living_room_modern_and_minimalistic_39b5a58a-e05b-4281-ac24-e87435256333-1.webp", "steps": 8, "format": "jpg", "prompt": "a nordic livingroom, 4k interior photography, uhd", "scheduler": "DDIM", "creativity": 0.4, "guess_mode": false, "resolution": 2560, "resemblance": 0.85, "guidance_scale": 0, "negative_prompt": "Teeth, tooth, open mouth, longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, mutant", "lora_details_strength": -0.25, "lora_sharpness_strength": 0.75 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
Each run costs approximately $0.045. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
We were unable to load these images. Please make sure the URLs are valid.
{ "input": "https://replicate.delivery/pbxt/LKnw8rSgafZf4IlAVyPhzpX1TpTVcyfRa1saoaoiSfUYZLiL/fermat_app_a_living_room_modern_and_minimalistic_39b5a58a-e05b-4281-ac24-e87435256333-1.webp", "outut": "https://replicate.delivery/pbxt/YFlNVWt9oEpTMVEKg69wXDRGtjHSHKV02ESZeChKj69ffiYmA/output.jpg" }
{
"completed_at": "2024-07-26T09:01:53.303407Z",
"created_at": "2024-07-26T08:59:39.746000Z",
"data_removed": false,
"error": null,
"id": "4xg26j3bc9rgm0cgxs28xehaag",
"input": {
"hdr": 0,
"image": "https://replicate.delivery/pbxt/LKnw8rSgafZf4IlAVyPhzpX1TpTVcyfRa1saoaoiSfUYZLiL/fermat_app_a_living_room_modern_and_minimalistic_39b5a58a-e05b-4281-ac24-e87435256333-1.webp",
"steps": 8,
"format": "jpg",
"prompt": "a nordic livingroom, 4k interior photography, uhd",
"scheduler": "DDIM",
"tile_size": 768,
"creativity": 0.4,
"guess_mode": false,
"resolution": 2560,
"resemblance": 0.85,
"guidance_scale": 0,
"negative_prompt": "Teeth, tooth, open mouth, longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, mutant",
"lora_details_strength": -0.25,
"lora_sharpness_strength": 0.75
},
"logs": "Using seed: 20941\nThe config attributes {'solver_order': 2, 'algorithm_type': 'deis', 'solver_type': 'logrho', 'lower_order_final': True, 'use_karras_sigmas': False} were passed to LCMScheduler, but are not expected and will be ignored. Please verify your scheduler_config.json configuration file.\n 0%| | 0/3 [00:00<?, ?it/s]\n 33%|███▎ | 1/3 [00:00<00:00, 2.53it/s]\n 67%|██████▋ | 2/3 [00:00<00:00, 3.74it/s]\n100%|██████████| 3/3 [00:00<00:00, 4.42it/s]\n100%|██████████| 3/3 [00:00<00:00, 4.00it/s]\n 0%| | 0/3 [00:00<?, ?it/s]\n 33%|███▎ | 1/3 [00:00<00:01, 1.95it/s]\n 67%|██████▋ | 2/3 [00:00<00:00, 2.87it/s]\n100%|██████████| 3/3 [00:00<00:00, 3.39it/s]\n100%|██████████| 3/3 [00:00<00:00, 3.07it/s]\n 0%| | 0/3 [00:00<?, ?it/s]\n 33%|███▎ | 1/3 [00:00<00:01, 1.19it/s]\n 67%|██████▋ | 2/3 [00:01<00:00, 1.72it/s]\n100%|██████████| 3/3 [00:01<00:00, 2.01it/s]\n100%|██████████| 3/3 [00:01<00:00, 1.83it/s]\n 0%| | 0/3 [00:00<?, ?it/s]\n 33%|███▎ | 1/3 [00:00<00:00, 3.68it/s]\n 67%|██████▋ | 2/3 [00:00<00:00, 5.52it/s]\n100%|██████████| 3/3 [00:00<00:00, 6.58it/s]\n100%|██████████| 3/3 [00:00<00:00, 5.92it/s]\n 0%| | 0/3 [00:00<?, ?it/s]\n 33%|███▎ | 1/3 [00:00<00:01, 1.96it/s]\n 67%|██████▋ | 2/3 [00:00<00:00, 2.89it/s]\n100%|██████████| 3/3 [00:00<00:00, 3.41it/s]\n100%|██████████| 3/3 [00:00<00:00, 3.09it/s]\n 0%| | 0/3 [00:00<?, ?it/s]\n 33%|███▎ | 1/3 [00:00<00:01, 1.52it/s]\n 67%|██████▋ | 2/3 [00:00<00:00, 2.22it/s]\n100%|██████████| 3/3 [00:01<00:00, 2.60it/s]\n100%|██████████| 3/3 [00:01<00:00, 2.36it/s]\n 0%| | 0/3 [00:00<?, ?it/s]\n 33%|███▎ | 1/3 [00:00<00:00, 3.60it/s]\n 67%|██████▋ | 2/3 [00:00<00:00, 5.34it/s]\n100%|██████████| 3/3 [00:00<00:00, 6.30it/s]\n100%|██████████| 3/3 [00:00<00:00, 5.70it/s]\n 0%| | 0/3 [00:00<?, ?it/s]\n 33%|███▎ | 1/3 [00:00<00:00, 9.58it/s]\n100%|██████████| 3/3 [00:00<00:00, 14.86it/s]\n100%|██████████| 3/3 [00:00<00:00, 14.07it/s]\n 0%| | 0/3 [00:00<?, ?it/s]\n 33%|███▎ | 1/3 [00:00<00:01, 1.76it/s]\n 67%|██████▋ | 2/3 [00:00<00:00, 2.59it/s]\n100%|██████████| 3/3 [00:01<00:00, 3.05it/s]\n100%|██████████| 3/3 [00:01<00:00, 2.76it/s]\n 0%| | 0/3 [00:00<?, ?it/s]\n 33%|███▎ | 1/3 [00:00<00:00, 5.07it/s]\n100%|██████████| 3/3 [00:00<00:00, 8.61it/s]\n100%|██████████| 3/3 [00:00<00:00, 8.05it/s]\n 0%| | 0/3 [00:00<?, ?it/s]\n 33%|███▎ | 1/3 [00:00<00:01, 1.76it/s]\n 67%|██████▋ | 2/3 [00:00<00:00, 2.61it/s]\n100%|██████████| 3/3 [00:01<00:00, 3.08it/s]\n100%|██████████| 3/3 [00:01<00:00, 2.78it/s]\n 0%| | 0/3 [00:00<?, ?it/s]\n 33%|███▎ | 1/3 [00:00<00:01, 1.34it/s]\n 67%|██████▋ | 2/3 [00:01<00:00, 1.95it/s]\n100%|██████████| 3/3 [00:01<00:00, 2.28it/s]\n100%|██████████| 3/3 [00:01<00:00, 2.08it/s]\n 0%| | 0/3 [00:00<?, ?it/s]\n 33%|███▎ | 1/3 [00:00<00:01, 1.34it/s]\n 67%|██████▋ | 2/3 [00:01<00:00, 1.95it/s]\n100%|██████████| 3/3 [00:01<00:00, 2.27it/s]\n100%|██████████| 3/3 [00:01<00:00, 2.07it/s]\n 0%| | 0/3 [00:00<?, ?it/s]\n 33%|███▎ | 1/3 [00:00<00:00, 4.06it/s]\n 67%|██████▋ | 2/3 [00:00<00:00, 6.06it/s]\n100%|██████████| 3/3 [00:00<00:00, 7.20it/s]\n100%|██████████| 3/3 [00:00<00:00, 6.49it/s]\n 0%| | 0/3 [00:00<?, ?it/s]\n 33%|███▎ | 1/3 [00:00<00:00, 4.88it/s]\n100%|██████████| 3/3 [00:00<00:00, 8.16it/s]\n100%|██████████| 3/3 [00:00<00:00, 7.65it/s]\n 0%| | 0/3 [00:00<?, ?it/s]\n 33%|███▎ | 1/3 [00:00<00:00, 3.97it/s]\n 67%|██████▋ | 2/3 [00:00<00:00, 5.86it/s]\n100%|██████████| 3/3 [00:00<00:00, 6.92it/s]\n100%|██████████| 3/3 [00:00<00:00, 6.26it/s]\n 0%| | 0/2 [00:00<?, ?it/s]\n 50%|█████ | 1/2 [00:03<00:03, 3.98s/it]\n100%|██████████| 2/2 [00:06<00:00, 2.94s/it]\n100%|██████████| 2/2 [00:06<00:00, 3.10s/it]",
"metrics": {
"predict_time": 59.897140822,
"total_time": 133.557407
},
"output": "https://replicate.delivery/pbxt/YFlNVWt9oEpTMVEKg69wXDRGtjHSHKV02ESZeChKj69ffiYmA/output.jpg",
"started_at": "2024-07-26T09:00:53.406266Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/4xg26j3bc9rgm0cgxs28xehaag",
"cancel": "https://api.replicate.com/v1/predictions/4xg26j3bc9rgm0cgxs28xehaag/cancel"
},
"version": "13c637d35ebfe5e44a5297c370134b0f6921d0ee73f103ccfee7349dcaf59c76"
}
Using seed: 20941
The config attributes {'solver_order': 2, 'algorithm_type': 'deis', 'solver_type': 'logrho', 'lower_order_final': True, 'use_karras_sigmas': False} were passed to LCMScheduler, but are not expected and will be ignored. Please verify your scheduler_config.json configuration file.
0%| | 0/3 [00:00<?, ?it/s]
33%|███▎ | 1/3 [00:00<00:00, 2.53it/s]
67%|██████▋ | 2/3 [00:00<00:00, 3.74it/s]
100%|██████████| 3/3 [00:00<00:00, 4.42it/s]
100%|██████████| 3/3 [00:00<00:00, 4.00it/s]
0%| | 0/3 [00:00<?, ?it/s]
33%|███▎ | 1/3 [00:00<00:01, 1.95it/s]
67%|██████▋ | 2/3 [00:00<00:00, 2.87it/s]
100%|██████████| 3/3 [00:00<00:00, 3.39it/s]
100%|██████████| 3/3 [00:00<00:00, 3.07it/s]
0%| | 0/3 [00:00<?, ?it/s]
33%|███▎ | 1/3 [00:00<00:01, 1.19it/s]
67%|██████▋ | 2/3 [00:01<00:00, 1.72it/s]
100%|██████████| 3/3 [00:01<00:00, 2.01it/s]
100%|██████████| 3/3 [00:01<00:00, 1.83it/s]
0%| | 0/3 [00:00<?, ?it/s]
33%|███▎ | 1/3 [00:00<00:00, 3.68it/s]
67%|██████▋ | 2/3 [00:00<00:00, 5.52it/s]
100%|██████████| 3/3 [00:00<00:00, 6.58it/s]
100%|██████████| 3/3 [00:00<00:00, 5.92it/s]
0%| | 0/3 [00:00<?, ?it/s]
33%|███▎ | 1/3 [00:00<00:01, 1.96it/s]
67%|██████▋ | 2/3 [00:00<00:00, 2.89it/s]
100%|██████████| 3/3 [00:00<00:00, 3.41it/s]
100%|██████████| 3/3 [00:00<00:00, 3.09it/s]
0%| | 0/3 [00:00<?, ?it/s]
33%|███▎ | 1/3 [00:00<00:01, 1.52it/s]
67%|██████▋ | 2/3 [00:00<00:00, 2.22it/s]
100%|██████████| 3/3 [00:01<00:00, 2.60it/s]
100%|██████████| 3/3 [00:01<00:00, 2.36it/s]
0%| | 0/3 [00:00<?, ?it/s]
33%|███▎ | 1/3 [00:00<00:00, 3.60it/s]
67%|██████▋ | 2/3 [00:00<00:00, 5.34it/s]
100%|██████████| 3/3 [00:00<00:00, 6.30it/s]
100%|██████████| 3/3 [00:00<00:00, 5.70it/s]
0%| | 0/3 [00:00<?, ?it/s]
33%|███▎ | 1/3 [00:00<00:00, 9.58it/s]
100%|██████████| 3/3 [00:00<00:00, 14.86it/s]
100%|██████████| 3/3 [00:00<00:00, 14.07it/s]
0%| | 0/3 [00:00<?, ?it/s]
33%|███▎ | 1/3 [00:00<00:01, 1.76it/s]
67%|██████▋ | 2/3 [00:00<00:00, 2.59it/s]
100%|██████████| 3/3 [00:01<00:00, 3.05it/s]
100%|██████████| 3/3 [00:01<00:00, 2.76it/s]
0%| | 0/3 [00:00<?, ?it/s]
33%|███▎ | 1/3 [00:00<00:00, 5.07it/s]
100%|██████████| 3/3 [00:00<00:00, 8.61it/s]
100%|██████████| 3/3 [00:00<00:00, 8.05it/s]
0%| | 0/3 [00:00<?, ?it/s]
33%|███▎ | 1/3 [00:00<00:01, 1.76it/s]
67%|██████▋ | 2/3 [00:00<00:00, 2.61it/s]
100%|██████████| 3/3 [00:01<00:00, 3.08it/s]
100%|██████████| 3/3 [00:01<00:00, 2.78it/s]
0%| | 0/3 [00:00<?, ?it/s]
33%|███▎ | 1/3 [00:00<00:01, 1.34it/s]
67%|██████▋ | 2/3 [00:01<00:00, 1.95it/s]
100%|██████████| 3/3 [00:01<00:00, 2.28it/s]
100%|██████████| 3/3 [00:01<00:00, 2.08it/s]
0%| | 0/3 [00:00<?, ?it/s]
33%|███▎ | 1/3 [00:00<00:01, 1.34it/s]
67%|██████▋ | 2/3 [00:01<00:00, 1.95it/s]
100%|██████████| 3/3 [00:01<00:00, 2.27it/s]
100%|██████████| 3/3 [00:01<00:00, 2.07it/s]
0%| | 0/3 [00:00<?, ?it/s]
33%|███▎ | 1/3 [00:00<00:00, 4.06it/s]
67%|██████▋ | 2/3 [00:00<00:00, 6.06it/s]
100%|██████████| 3/3 [00:00<00:00, 7.20it/s]
100%|██████████| 3/3 [00:00<00:00, 6.49it/s]
0%| | 0/3 [00:00<?, ?it/s]
33%|███▎ | 1/3 [00:00<00:00, 4.88it/s]
100%|██████████| 3/3 [00:00<00:00, 8.16it/s]
100%|██████████| 3/3 [00:00<00:00, 7.65it/s]
0%| | 0/3 [00:00<?, ?it/s]
33%|███▎ | 1/3 [00:00<00:00, 3.97it/s]
67%|██████▋ | 2/3 [00:00<00:00, 5.86it/s]
100%|██████████| 3/3 [00:00<00:00, 6.92it/s]
100%|██████████| 3/3 [00:00<00:00, 6.26it/s]
0%| | 0/2 [00:00<?, ?it/s]
50%|█████ | 1/2 [00:03<00:03, 3.98s/it]
100%|██████████| 2/2 [00:06<00:00, 2.94s/it]
100%|██████████| 2/2 [00:06<00:00, 3.10s/it]
This output was created using a different version of the model, fermatresearch/high-resolution-controlnet-tile:13c637d3.
This model costs approximately $0.045 to run on Replicate, or 22 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.
This model runs on Nvidia L40S GPU hardware. Predictions typically complete within 47 seconds. The predict time for this model varies significantly based on the inputs.
High quality upscale from Fermat.app. Increase the creativity to encourage hallucination.
This model is cold. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
Choose a file from your machine
Hint: you can also drag files onto the input
Using seed: 20941
The config attributes {'solver_order': 2, 'algorithm_type': 'deis', 'solver_type': 'logrho', 'lower_order_final': True, 'use_karras_sigmas': False} were passed to LCMScheduler, but are not expected and will be ignored. Please verify your scheduler_config.json configuration file.
0%| | 0/3 [00:00<?, ?it/s]
33%|███▎ | 1/3 [00:00<00:00, 2.53it/s]
67%|██████▋ | 2/3 [00:00<00:00, 3.74it/s]
100%|██████████| 3/3 [00:00<00:00, 4.42it/s]
100%|██████████| 3/3 [00:00<00:00, 4.00it/s]
0%| | 0/3 [00:00<?, ?it/s]
33%|███▎ | 1/3 [00:00<00:01, 1.95it/s]
67%|██████▋ | 2/3 [00:00<00:00, 2.87it/s]
100%|██████████| 3/3 [00:00<00:00, 3.39it/s]
100%|██████████| 3/3 [00:00<00:00, 3.07it/s]
0%| | 0/3 [00:00<?, ?it/s]
33%|███▎ | 1/3 [00:00<00:01, 1.19it/s]
67%|██████▋ | 2/3 [00:01<00:00, 1.72it/s]
100%|██████████| 3/3 [00:01<00:00, 2.01it/s]
100%|██████████| 3/3 [00:01<00:00, 1.83it/s]
0%| | 0/3 [00:00<?, ?it/s]
33%|███▎ | 1/3 [00:00<00:00, 3.68it/s]
67%|██████▋ | 2/3 [00:00<00:00, 5.52it/s]
100%|██████████| 3/3 [00:00<00:00, 6.58it/s]
100%|██████████| 3/3 [00:00<00:00, 5.92it/s]
0%| | 0/3 [00:00<?, ?it/s]
33%|███▎ | 1/3 [00:00<00:01, 1.96it/s]
67%|██████▋ | 2/3 [00:00<00:00, 2.89it/s]
100%|██████████| 3/3 [00:00<00:00, 3.41it/s]
100%|██████████| 3/3 [00:00<00:00, 3.09it/s]
0%| | 0/3 [00:00<?, ?it/s]
33%|███▎ | 1/3 [00:00<00:01, 1.52it/s]
67%|██████▋ | 2/3 [00:00<00:00, 2.22it/s]
100%|██████████| 3/3 [00:01<00:00, 2.60it/s]
100%|██████████| 3/3 [00:01<00:00, 2.36it/s]
0%| | 0/3 [00:00<?, ?it/s]
33%|███▎ | 1/3 [00:00<00:00, 3.60it/s]
67%|██████▋ | 2/3 [00:00<00:00, 5.34it/s]
100%|██████████| 3/3 [00:00<00:00, 6.30it/s]
100%|██████████| 3/3 [00:00<00:00, 5.70it/s]
0%| | 0/3 [00:00<?, ?it/s]
33%|███▎ | 1/3 [00:00<00:00, 9.58it/s]
100%|██████████| 3/3 [00:00<00:00, 14.86it/s]
100%|██████████| 3/3 [00:00<00:00, 14.07it/s]
0%| | 0/3 [00:00<?, ?it/s]
33%|███▎ | 1/3 [00:00<00:01, 1.76it/s]
67%|██████▋ | 2/3 [00:00<00:00, 2.59it/s]
100%|██████████| 3/3 [00:01<00:00, 3.05it/s]
100%|██████████| 3/3 [00:01<00:00, 2.76it/s]
0%| | 0/3 [00:00<?, ?it/s]
33%|███▎ | 1/3 [00:00<00:00, 5.07it/s]
100%|██████████| 3/3 [00:00<00:00, 8.61it/s]
100%|██████████| 3/3 [00:00<00:00, 8.05it/s]
0%| | 0/3 [00:00<?, ?it/s]
33%|███▎ | 1/3 [00:00<00:01, 1.76it/s]
67%|██████▋ | 2/3 [00:00<00:00, 2.61it/s]
100%|██████████| 3/3 [00:01<00:00, 3.08it/s]
100%|██████████| 3/3 [00:01<00:00, 2.78it/s]
0%| | 0/3 [00:00<?, ?it/s]
33%|███▎ | 1/3 [00:00<00:01, 1.34it/s]
67%|██████▋ | 2/3 [00:01<00:00, 1.95it/s]
100%|██████████| 3/3 [00:01<00:00, 2.28it/s]
100%|██████████| 3/3 [00:01<00:00, 2.08it/s]
0%| | 0/3 [00:00<?, ?it/s]
33%|███▎ | 1/3 [00:00<00:01, 1.34it/s]
67%|██████▋ | 2/3 [00:01<00:00, 1.95it/s]
100%|██████████| 3/3 [00:01<00:00, 2.27it/s]
100%|██████████| 3/3 [00:01<00:00, 2.07it/s]
0%| | 0/3 [00:00<?, ?it/s]
33%|███▎ | 1/3 [00:00<00:00, 4.06it/s]
67%|██████▋ | 2/3 [00:00<00:00, 6.06it/s]
100%|██████████| 3/3 [00:00<00:00, 7.20it/s]
100%|██████████| 3/3 [00:00<00:00, 6.49it/s]
0%| | 0/3 [00:00<?, ?it/s]
33%|███▎ | 1/3 [00:00<00:00, 4.88it/s]
100%|██████████| 3/3 [00:00<00:00, 8.16it/s]
100%|██████████| 3/3 [00:00<00:00, 7.65it/s]
0%| | 0/3 [00:00<?, ?it/s]
33%|███▎ | 1/3 [00:00<00:00, 3.97it/s]
67%|██████▋ | 2/3 [00:00<00:00, 5.86it/s]
100%|██████████| 3/3 [00:00<00:00, 6.92it/s]
100%|██████████| 3/3 [00:00<00:00, 6.26it/s]
0%| | 0/2 [00:00<?, ?it/s]
50%|█████ | 1/2 [00:03<00:03, 3.98s/it]
100%|██████████| 2/2 [00:06<00:00, 2.94s/it]
100%|██████████| 2/2 [00:06<00:00, 3.10s/it]