Failed to load versions. Head to the versions page to see all versions for this model.
You're looking at a specific version of this model. Jump to the model overview.
This version has been disabled because it consistently fails to complete setup.
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run fermatresearch/high-resolution-controlnet-tile using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"fermatresearch/high-resolution-controlnet-tile:13c637d35ebfe5e44a5297c370134b0f6921d0ee73f103ccfee7349dcaf59c76",
{
input: {
hdr: 0,
image: "https://replicate.delivery/pbxt/LKXd5RrqR3YITx6LYu6HFOIHgQl8EdHZV2qQcLhPoI4deTpO/f84e7869-32ca-444b-a720-19e4325f4347.jpg",
steps: 8,
format: "jpg",
prompt: "a woman wearing a colorful suit",
scheduler: "DDIM",
tile_size: 512,
creativity: 0.4,
guess_mode: false,
resolution: 2048,
resemblance: 0.85,
guidance_scale: 0,
negative_prompt: "Teeth, tooth, open mouth, longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, mutant",
lora_details_strength: 0.75,
lora_sharpness_strength: 1
}
}
);
// To access the file URL:
console.log(output.url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run fermatresearch/high-resolution-controlnet-tile using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"fermatresearch/high-resolution-controlnet-tile:13c637d35ebfe5e44a5297c370134b0f6921d0ee73f103ccfee7349dcaf59c76",
input={
"hdr": 0,
"image": "https://replicate.delivery/pbxt/LKXd5RrqR3YITx6LYu6HFOIHgQl8EdHZV2qQcLhPoI4deTpO/f84e7869-32ca-444b-a720-19e4325f4347.jpg",
"steps": 8,
"format": "jpg",
"prompt": "a woman wearing a colorful suit",
"scheduler": "DDIM",
"tile_size": 512,
"creativity": 0.4,
"guess_mode": False,
"resolution": 2048,
"resemblance": 0.85,
"guidance_scale": 0,
"negative_prompt": "Teeth, tooth, open mouth, longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, mutant",
"lora_details_strength": 0.75,
"lora_sharpness_strength": 1
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run fermatresearch/high-resolution-controlnet-tile using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "13c637d35ebfe5e44a5297c370134b0f6921d0ee73f103ccfee7349dcaf59c76",
"input": {
"hdr": 0,
"image": "https://replicate.delivery/pbxt/LKXd5RrqR3YITx6LYu6HFOIHgQl8EdHZV2qQcLhPoI4deTpO/f84e7869-32ca-444b-a720-19e4325f4347.jpg",
"steps": 8,
"format": "jpg",
"prompt": "a woman wearing a colorful suit",
"scheduler": "DDIM",
"tile_size": 512,
"creativity": 0.4,
"guess_mode": false,
"resolution": 2048,
"resemblance": 0.85,
"guidance_scale": 0,
"negative_prompt": "Teeth, tooth, open mouth, longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, mutant",
"lora_details_strength": 0.75,
"lora_sharpness_strength": 1
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
Output
We were unable to load these images. Please make sure the URLs are valid.
{ "input": "https://replicate.delivery/pbxt/LKXd5RrqR3YITx6LYu6HFOIHgQl8EdHZV2qQcLhPoI4deTpO/f84e7869-32ca-444b-a720-19e4325f4347.jpg", "outut": "https://replicate.delivery/pbxt/uVYXPohfE3U5WC67kSr4TahCjwuu1hJJZz3f633PfMwQtDYmA/output.jpg" }
{
"completed_at": "2024-07-25T15:13:45.687896Z",
"created_at": "2024-07-25T15:12:37.239000Z",
"data_removed": false,
"error": null,
"id": "4nt04qw3exrgm0cgx9stm0nek8",
"input": {
"hdr": 0,
"image": "https://replicate.delivery/pbxt/LKXd5RrqR3YITx6LYu6HFOIHgQl8EdHZV2qQcLhPoI4deTpO/f84e7869-32ca-444b-a720-19e4325f4347.jpg",
"steps": 8,
"format": "jpg",
"prompt": "a woman wearing a colorful suit",
"scheduler": "DDIM",
"tile_size": 512,
"creativity": 0.4,
"guess_mode": false,
"resolution": 2048,
"resemblance": 0.85,
"guidance_scale": 0,
"negative_prompt": "Teeth, tooth, open mouth, longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, mutant",
"lora_details_strength": 0.75,
"lora_sharpness_strength": 1
},
"logs": "Using seed: 33864\nThe config attributes {'solver_order': 2, 'algorithm_type': 'deis', 'solver_type': 'logrho', 'lower_order_final': True, 'use_karras_sigmas': False} were passed to LCMScheduler, but are not expected and will be ignored. Please verify your scheduler_config.json configuration file.\n 0%| | 0/3 [00:00<?, ?it/s]\n 33%|███▎ | 1/3 [00:00<00:00, 6.35it/s]\n100%|██████████| 3/3 [00:00<00:00, 10.64it/s]\n100%|██████████| 3/3 [00:00<00:00, 9.96it/s]\n 0%| | 0/3 [00:00<?, ?it/s]\n 33%|███▎ | 1/3 [00:00<00:00, 4.80it/s]\n100%|██████████| 3/3 [00:00<00:00, 8.21it/s]\n100%|██████████| 3/3 [00:00<00:00, 7.66it/s]\n 0%| | 0/3 [00:00<?, ?it/s]\n 33%|███▎ | 1/3 [00:00<00:00, 3.28it/s]\n 67%|██████▋ | 2/3 [00:00<00:00, 4.88it/s]\n100%|██████████| 3/3 [00:00<00:00, 5.80it/s]\n100%|██████████| 3/3 [00:00<00:00, 5.23it/s]\n 0%| | 0/3 [00:00<?, ?it/s]\n 33%|███▎ | 1/3 [00:00<00:00, 4.72it/s]\n100%|██████████| 3/3 [00:00<00:00, 8.08it/s]\n100%|██████████| 3/3 [00:00<00:00, 7.54it/s]\n 0%| | 0/3 [00:00<?, ?it/s]\n 33%|███▎ | 1/3 [00:00<00:00, 4.72it/s]\n100%|██████████| 3/3 [00:00<00:00, 8.08it/s]\n100%|██████████| 3/3 [00:00<00:00, 7.54it/s]\n 0%| | 0/3 [00:00<?, ?it/s]\n 33%|███▎ | 1/3 [00:00<00:00, 3.28it/s]\n 67%|██████▋ | 2/3 [00:00<00:00, 4.87it/s]\n100%|██████████| 3/3 [00:00<00:00, 5.78it/s]\n100%|██████████| 3/3 [00:00<00:00, 5.21it/s]\n 0%| | 0/3 [00:00<?, ?it/s]\n 33%|███▎ | 1/3 [00:00<00:00, 4.77it/s]\n100%|██████████| 3/3 [00:00<00:00, 8.16it/s]\n100%|██████████| 3/3 [00:00<00:00, 7.61it/s]\n 0%| | 0/3 [00:00<?, ?it/s]\n 33%|███▎ | 1/3 [00:00<00:00, 6.38it/s]\n100%|██████████| 3/3 [00:00<00:00, 10.61it/s]\n100%|██████████| 3/3 [00:00<00:00, 9.94it/s]\n 0%| | 0/3 [00:00<?, ?it/s]\n 33%|███▎ | 1/3 [00:00<00:00, 4.78it/s]\n100%|██████████| 3/3 [00:00<00:00, 8.15it/s]\n100%|██████████| 3/3 [00:00<00:00, 7.61it/s]\n 0%| | 0/3 [00:00<?, ?it/s]\n 33%|███▎ | 1/3 [00:00<00:00, 6.34it/s]\n100%|██████████| 3/3 [00:00<00:00, 10.58it/s]\n100%|██████████| 3/3 [00:00<00:00, 9.91it/s]\n 0%| | 0/3 [00:00<?, ?it/s]\n 33%|███▎ | 1/3 [00:00<00:00, 4.71it/s]\n100%|██████████| 3/3 [00:00<00:00, 8.04it/s]\n100%|██████████| 3/3 [00:00<00:00, 7.51it/s]\n 0%| | 0/3 [00:00<?, ?it/s]\n 33%|███▎ | 1/3 [00:00<00:00, 3.28it/s]\n 67%|██████▋ | 2/3 [00:00<00:00, 4.86it/s]\n100%|██████████| 3/3 [00:00<00:00, 5.76it/s]\n100%|██████████| 3/3 [00:00<00:00, 5.20it/s]\n 0%| | 0/3 [00:00<?, ?it/s]\n 33%|███▎ | 1/3 [00:00<00:00, 3.27it/s]\n 67%|██████▋ | 2/3 [00:00<00:00, 4.86it/s]\n100%|██████████| 3/3 [00:00<00:00, 5.75it/s]\n100%|██████████| 3/3 [00:00<00:00, 5.19it/s]\n 0%| | 0/3 [00:00<?, ?it/s]\n 33%|███▎ | 1/3 [00:00<00:00, 4.70it/s]\n100%|██████████| 3/3 [00:00<00:00, 8.04it/s]\n100%|██████████| 3/3 [00:00<00:00, 7.50it/s]\n 0%| | 0/3 [00:00<?, ?it/s]\n 33%|███▎ | 1/3 [00:00<00:00, 6.35it/s]\n100%|██████████| 3/3 [00:00<00:00, 10.59it/s]\n100%|██████████| 3/3 [00:00<00:00, 9.92it/s]\n 0%| | 0/3 [00:00<?, ?it/s]\n 33%|███▎ | 1/3 [00:00<00:00, 4.77it/s]\n100%|██████████| 3/3 [00:00<00:00, 8.14it/s]\n100%|██████████| 3/3 [00:00<00:00, 7.60it/s]\n 0%| | 0/2 [00:00<?, ?it/s]\n 50%|█████ | 1/2 [00:01<00:01, 1.95s/it]\n100%|██████████| 2/2 [00:02<00:00, 1.39s/it]\n100%|██████████| 2/2 [00:02<00:00, 1.47s/it]",
"metrics": {
"predict_time": 34.368119126,
"total_time": 68.448896
},
"output": "https://replicate.delivery/pbxt/uVYXPohfE3U5WC67kSr4TahCjwuu1hJJZz3f633PfMwQtDYmA/output.jpg",
"started_at": "2024-07-25T15:13:11.319777Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/4nt04qw3exrgm0cgx9stm0nek8",
"cancel": "https://api.replicate.com/v1/predictions/4nt04qw3exrgm0cgx9stm0nek8/cancel"
},
"version": "13c637d35ebfe5e44a5297c370134b0f6921d0ee73f103ccfee7349dcaf59c76"
}
Using seed: 33864
The config attributes {'solver_order': 2, 'algorithm_type': 'deis', 'solver_type': 'logrho', 'lower_order_final': True, 'use_karras_sigmas': False} were passed to LCMScheduler, but are not expected and will be ignored. Please verify your scheduler_config.json configuration file.
0%| | 0/3 [00:00<?, ?it/s]
33%|███▎ | 1/3 [00:00<00:00, 6.35it/s]
100%|██████████| 3/3 [00:00<00:00, 10.64it/s]
100%|██████████| 3/3 [00:00<00:00, 9.96it/s]
0%| | 0/3 [00:00<?, ?it/s]
33%|███▎ | 1/3 [00:00<00:00, 4.80it/s]
100%|██████████| 3/3 [00:00<00:00, 8.21it/s]
100%|██████████| 3/3 [00:00<00:00, 7.66it/s]
0%| | 0/3 [00:00<?, ?it/s]
33%|███▎ | 1/3 [00:00<00:00, 3.28it/s]
67%|██████▋ | 2/3 [00:00<00:00, 4.88it/s]
100%|██████████| 3/3 [00:00<00:00, 5.80it/s]
100%|██████████| 3/3 [00:00<00:00, 5.23it/s]
0%| | 0/3 [00:00<?, ?it/s]
33%|███▎ | 1/3 [00:00<00:00, 4.72it/s]
100%|██████████| 3/3 [00:00<00:00, 8.08it/s]
100%|██████████| 3/3 [00:00<00:00, 7.54it/s]
0%| | 0/3 [00:00<?, ?it/s]
33%|███▎ | 1/3 [00:00<00:00, 4.72it/s]
100%|██████████| 3/3 [00:00<00:00, 8.08it/s]
100%|██████████| 3/3 [00:00<00:00, 7.54it/s]
0%| | 0/3 [00:00<?, ?it/s]
33%|███▎ | 1/3 [00:00<00:00, 3.28it/s]
67%|██████▋ | 2/3 [00:00<00:00, 4.87it/s]
100%|██████████| 3/3 [00:00<00:00, 5.78it/s]
100%|██████████| 3/3 [00:00<00:00, 5.21it/s]
0%| | 0/3 [00:00<?, ?it/s]
33%|███▎ | 1/3 [00:00<00:00, 4.77it/s]
100%|██████████| 3/3 [00:00<00:00, 8.16it/s]
100%|██████████| 3/3 [00:00<00:00, 7.61it/s]
0%| | 0/3 [00:00<?, ?it/s]
33%|███▎ | 1/3 [00:00<00:00, 6.38it/s]
100%|██████████| 3/3 [00:00<00:00, 10.61it/s]
100%|██████████| 3/3 [00:00<00:00, 9.94it/s]
0%| | 0/3 [00:00<?, ?it/s]
33%|███▎ | 1/3 [00:00<00:00, 4.78it/s]
100%|██████████| 3/3 [00:00<00:00, 8.15it/s]
100%|██████████| 3/3 [00:00<00:00, 7.61it/s]
0%| | 0/3 [00:00<?, ?it/s]
33%|███▎ | 1/3 [00:00<00:00, 6.34it/s]
100%|██████████| 3/3 [00:00<00:00, 10.58it/s]
100%|██████████| 3/3 [00:00<00:00, 9.91it/s]
0%| | 0/3 [00:00<?, ?it/s]
33%|███▎ | 1/3 [00:00<00:00, 4.71it/s]
100%|██████████| 3/3 [00:00<00:00, 8.04it/s]
100%|██████████| 3/3 [00:00<00:00, 7.51it/s]
0%| | 0/3 [00:00<?, ?it/s]
33%|███▎ | 1/3 [00:00<00:00, 3.28it/s]
67%|██████▋ | 2/3 [00:00<00:00, 4.86it/s]
100%|██████████| 3/3 [00:00<00:00, 5.76it/s]
100%|██████████| 3/3 [00:00<00:00, 5.20it/s]
0%| | 0/3 [00:00<?, ?it/s]
33%|███▎ | 1/3 [00:00<00:00, 3.27it/s]
67%|██████▋ | 2/3 [00:00<00:00, 4.86it/s]
100%|██████████| 3/3 [00:00<00:00, 5.75it/s]
100%|██████████| 3/3 [00:00<00:00, 5.19it/s]
0%| | 0/3 [00:00<?, ?it/s]
33%|███▎ | 1/3 [00:00<00:00, 4.70it/s]
100%|██████████| 3/3 [00:00<00:00, 8.04it/s]
100%|██████████| 3/3 [00:00<00:00, 7.50it/s]
0%| | 0/3 [00:00<?, ?it/s]
33%|███▎ | 1/3 [00:00<00:00, 6.35it/s]
100%|██████████| 3/3 [00:00<00:00, 10.59it/s]
100%|██████████| 3/3 [00:00<00:00, 9.92it/s]
0%| | 0/3 [00:00<?, ?it/s]
33%|███▎ | 1/3 [00:00<00:00, 4.77it/s]
100%|██████████| 3/3 [00:00<00:00, 8.14it/s]
100%|██████████| 3/3 [00:00<00:00, 7.60it/s]
0%| | 0/2 [00:00<?, ?it/s]
50%|█████ | 1/2 [00:01<00:01, 1.95s/it]
100%|██████████| 2/2 [00:02<00:00, 1.39s/it]
100%|██████████| 2/2 [00:02<00:00, 1.47s/it]