fermatresearch / sdxl-weighting-prompts
SDXL with prompt weighting available using Compel's syntax. Check the Github link for the docs.
- Public
- 3.3K runs
-
A100 (80GB)
- GitHub
Prediction
fermatresearch/sdxl-weighting-prompts:66175a2993706e1721076d5c7f92f0c81ec6d065ec20717527f05dd8528a1fc7ID6zf2hzzbh6xnytdryqcvqhnehqStatusSucceededSourceWebHardwareA100 (40GB)Total durationCreatedInput
- seed
- 12345
- width
- 1024
- height
- 1024
- prompt
- a legendary bird is flying (under the sea)1.4 water staring at a multicolor sky, wallpaper, corals and fish are swimming around
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER
- lora_scale
- 0.6
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- ugly, blurry, realistic
- prompt_strength
- 0.8
- prompt_weighting
- num_inference_steps
- 50
{ "seed": 12345, "width": 1024, "height": 1024, "prompt": "a legendary bird is flying (under the sea)1.4 water staring at a multicolor sky, wallpaper, corals and fish are swimming around", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "ugly, blurry, realistic", "prompt_strength": 0.8, "prompt_weighting": true, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run fermatresearch/sdxl-weighting-prompts using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "fermatresearch/sdxl-weighting-prompts:66175a2993706e1721076d5c7f92f0c81ec6d065ec20717527f05dd8528a1fc7", { input: { seed: 12345, width: 1024, height: 1024, prompt: "a legendary bird is flying (under the sea)1.4 water staring at a multicolor sky, wallpaper, corals and fish are swimming around", refine: "expert_ensemble_refiner", scheduler: "K_EULER", lora_scale: 0.6, num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "ugly, blurry, realistic", prompt_strength: 0.8, prompt_weighting: true, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run fermatresearch/sdxl-weighting-prompts using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "fermatresearch/sdxl-weighting-prompts:66175a2993706e1721076d5c7f92f0c81ec6d065ec20717527f05dd8528a1fc7", input={ "seed": 12345, "width": 1024, "height": 1024, "prompt": "a legendary bird is flying (under the sea)1.4 water staring at a multicolor sky, wallpaper, corals and fish are swimming around", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "ugly, blurry, realistic", "prompt_strength": 0.8, "prompt_weighting": True, "num_inference_steps": 50 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run fermatresearch/sdxl-weighting-prompts using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "fermatresearch/sdxl-weighting-prompts:66175a2993706e1721076d5c7f92f0c81ec6d065ec20717527f05dd8528a1fc7", "input": { "seed": 12345, "width": 1024, "height": 1024, "prompt": "a legendary bird is flying (under the sea)1.4 water staring at a multicolor sky, wallpaper, corals and fish are swimming around", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "ugly, blurry, realistic", "prompt_strength": 0.8, "prompt_weighting": true, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/fermatresearch/sdxl-weighting-prompts@sha256:66175a2993706e1721076d5c7f92f0c81ec6d065ec20717527f05dd8528a1fc7 \ -i 'seed=12345' \ -i 'width=1024' \ -i 'height=1024' \ -i 'prompt="a legendary bird is flying (under the sea)1.4 water staring at a multicolor sky, wallpaper, corals and fish are swimming around"' \ -i 'refine="expert_ensemble_refiner"' \ -i 'scheduler="K_EULER"' \ -i 'lora_scale=0.6' \ -i 'num_outputs=1' \ -i 'guidance_scale=7.5' \ -i 'apply_watermark=true' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt="ugly, blurry, realistic"' \ -i 'prompt_strength=0.8' \ -i 'prompt_weighting=true' \ -i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/fermatresearch/sdxl-weighting-prompts@sha256:66175a2993706e1721076d5c7f92f0c81ec6d065ec20717527f05dd8528a1fc7
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "seed": 12345, "width": 1024, "height": 1024, "prompt": "a legendary bird is flying (under the sea)1.4 water staring at a multicolor sky, wallpaper, corals and fish are swimming around", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "ugly, blurry, realistic", "prompt_strength": 0.8, "prompt_weighting": true, "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-08-17T14:16:30.564814Z", "created_at": "2023-08-17T14:16:22.468622Z", "data_removed": false, "error": null, "id": "6zf2hzzbh6xnytdryqcvqhnehq", "input": { "seed": 12345, "width": 1024, "height": 1024, "prompt": "a legendary bird is flying (under the sea)1.4 water staring at a multicolor sky, wallpaper, corals and fish are swimming around", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "ugly, blurry, realistic", "prompt_strength": 0.8, "prompt_weighting": true, "num_inference_steps": 50 }, "logs": "Using seed: 12345\nPrompt: a legendary bird is flying (under the sea)1.4 water staring at a multicolor sky, wallpaper, corals and fish are swimming around\nUsing Compel for prompt embeddings\ntxt2img mode\nPrompt embeddings calculated by Compel\n 0%| | 0/40 [00:00<?, ?it/s]\n 2%|▎ | 1/40 [00:00<00:05, 6.86it/s]\n 5%|▌ | 2/40 [00:00<00:05, 7.23it/s]\n 8%|▊ | 3/40 [00:00<00:04, 7.78it/s]\n 10%|█ | 4/40 [00:00<00:04, 7.82it/s]\n 12%|█▎ | 5/40 [00:00<00:04, 8.08it/s]\n 15%|█▌ | 6/40 [00:00<00:04, 8.25it/s]\n 18%|█▊ | 7/40 [00:00<00:03, 8.35it/s]\n 20%|██ | 8/40 [00:00<00:03, 8.42it/s]\n 22%|██▎ | 9/40 [00:01<00:03, 8.46it/s]\n 25%|██▌ | 10/40 [00:01<00:03, 8.48it/s]\n 28%|██▊ | 11/40 [00:01<00:03, 8.28it/s]\n 30%|███ | 12/40 [00:01<00:03, 8.38it/s]\n 32%|███▎ | 13/40 [00:01<00:03, 8.42it/s]\n 35%|███▌ | 14/40 [00:01<00:03, 8.46it/s]\n 38%|███▊ | 15/40 [00:01<00:02, 8.49it/s]\n 40%|████ | 16/40 [00:01<00:02, 8.50it/s]\n 42%|████▎ | 17/40 [00:02<00:02, 8.52it/s]\n 45%|████▌ | 18/40 [00:02<00:02, 8.53it/s]\n 48%|████▊ | 19/40 [00:02<00:02, 8.53it/s]\n 50%|█████ | 20/40 [00:02<00:02, 8.38it/s]\n 52%|█████▎ | 21/40 [00:02<00:02, 8.40it/s]\n 55%|█████▌ | 22/40 [00:02<00:02, 8.29it/s]\n 57%|█████▊ | 23/40 [00:02<00:02, 8.37it/s]\n 60%|██████ | 24/40 [00:02<00:01, 8.42it/s]\n 62%|██████▎ | 25/40 [00:03<00:01, 8.45it/s]\n 65%|██████▌ | 26/40 [00:03<00:01, 8.47it/s]\n 68%|██████▊ | 27/40 [00:03<00:01, 8.49it/s]\n 70%|███████ | 28/40 [00:03<00:01, 8.50it/s]\n 72%|███████▎ | 29/40 [00:03<00:01, 8.51it/s]\n 75%|███████▌ | 30/40 [00:03<00:01, 8.52it/s]\n 78%|███████▊ | 31/40 [00:03<00:01, 8.52it/s]\n 80%|████████ | 32/40 [00:03<00:00, 8.53it/s]\n 82%|████████▎ | 33/40 [00:03<00:00, 8.53it/s]\n 85%|████████▌ | 34/40 [00:04<00:00, 8.53it/s]\n 88%|████████▊ | 35/40 [00:04<00:00, 8.53it/s]\n 90%|█████████ | 36/40 [00:04<00:00, 8.53it/s]\n 92%|█████████▎| 37/40 [00:04<00:00, 8.35it/s]\n 95%|█████████▌| 38/40 [00:04<00:00, 8.35it/s]\n 98%|█████████▊| 39/40 [00:04<00:00, 8.41it/s]\n100%|██████████| 40/40 [00:04<00:00, 8.45it/s]\n100%|██████████| 40/40 [00:04<00:00, 8.38it/s]\n 0%| | 0/10 [00:00<?, ?it/s]\n 10%|█ | 1/10 [00:00<00:01, 7.75it/s]\n 20%|██ | 2/10 [00:00<00:01, 7.70it/s]\n 30%|███ | 3/10 [00:00<00:00, 7.71it/s]\n 40%|████ | 4/10 [00:00<00:00, 7.69it/s]\n 50%|█████ | 5/10 [00:00<00:00, 7.68it/s]\n 60%|██████ | 6/10 [00:00<00:00, 7.69it/s]\n 70%|███████ | 7/10 [00:00<00:00, 7.68it/s]\n 80%|████████ | 8/10 [00:01<00:00, 7.69it/s]\n 90%|█████████ | 9/10 [00:01<00:00, 7.70it/s]\n100%|██████████| 10/10 [00:01<00:00, 7.70it/s]\n100%|██████████| 10/10 [00:01<00:00, 7.69it/s]", "metrics": { "predict_time": 8.164451, "total_time": 8.096192 }, "output": [ "https://replicate.delivery/pbxt/TyPQUgsHK9psF1ODn8cpnNUhbW55aPd4WrC9WCOBxEfe29aRA/out-0.png" ], "started_at": "2023-08-17T14:16:22.400363Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/6zf2hzzbh6xnytdryqcvqhnehq", "cancel": "https://api.replicate.com/v1/predictions/6zf2hzzbh6xnytdryqcvqhnehq/cancel" }, "version": "66175a2993706e1721076d5c7f92f0c81ec6d065ec20717527f05dd8528a1fc7" }
Generated inUsing seed: 12345 Prompt: a legendary bird is flying (under the sea)1.4 water staring at a multicolor sky, wallpaper, corals and fish are swimming around Using Compel for prompt embeddings txt2img mode Prompt embeddings calculated by Compel 0%| | 0/40 [00:00<?, ?it/s] 2%|▎ | 1/40 [00:00<00:05, 6.86it/s] 5%|▌ | 2/40 [00:00<00:05, 7.23it/s] 8%|▊ | 3/40 [00:00<00:04, 7.78it/s] 10%|█ | 4/40 [00:00<00:04, 7.82it/s] 12%|█▎ | 5/40 [00:00<00:04, 8.08it/s] 15%|█▌ | 6/40 [00:00<00:04, 8.25it/s] 18%|█▊ | 7/40 [00:00<00:03, 8.35it/s] 20%|██ | 8/40 [00:00<00:03, 8.42it/s] 22%|██▎ | 9/40 [00:01<00:03, 8.46it/s] 25%|██▌ | 10/40 [00:01<00:03, 8.48it/s] 28%|██▊ | 11/40 [00:01<00:03, 8.28it/s] 30%|███ | 12/40 [00:01<00:03, 8.38it/s] 32%|███▎ | 13/40 [00:01<00:03, 8.42it/s] 35%|███▌ | 14/40 [00:01<00:03, 8.46it/s] 38%|███▊ | 15/40 [00:01<00:02, 8.49it/s] 40%|████ | 16/40 [00:01<00:02, 8.50it/s] 42%|████▎ | 17/40 [00:02<00:02, 8.52it/s] 45%|████▌ | 18/40 [00:02<00:02, 8.53it/s] 48%|████▊ | 19/40 [00:02<00:02, 8.53it/s] 50%|█████ | 20/40 [00:02<00:02, 8.38it/s] 52%|█████▎ | 21/40 [00:02<00:02, 8.40it/s] 55%|█████▌ | 22/40 [00:02<00:02, 8.29it/s] 57%|█████▊ | 23/40 [00:02<00:02, 8.37it/s] 60%|██████ | 24/40 [00:02<00:01, 8.42it/s] 62%|██████▎ | 25/40 [00:03<00:01, 8.45it/s] 65%|██████▌ | 26/40 [00:03<00:01, 8.47it/s] 68%|██████▊ | 27/40 [00:03<00:01, 8.49it/s] 70%|███████ | 28/40 [00:03<00:01, 8.50it/s] 72%|███████▎ | 29/40 [00:03<00:01, 8.51it/s] 75%|███████▌ | 30/40 [00:03<00:01, 8.52it/s] 78%|███████▊ | 31/40 [00:03<00:01, 8.52it/s] 80%|████████ | 32/40 [00:03<00:00, 8.53it/s] 82%|████████▎ | 33/40 [00:03<00:00, 8.53it/s] 85%|████████▌ | 34/40 [00:04<00:00, 8.53it/s] 88%|████████▊ | 35/40 [00:04<00:00, 8.53it/s] 90%|█████████ | 36/40 [00:04<00:00, 8.53it/s] 92%|█████████▎| 37/40 [00:04<00:00, 8.35it/s] 95%|█████████▌| 38/40 [00:04<00:00, 8.35it/s] 98%|█████████▊| 39/40 [00:04<00:00, 8.41it/s] 100%|██████████| 40/40 [00:04<00:00, 8.45it/s] 100%|██████████| 40/40 [00:04<00:00, 8.38it/s] 0%| | 0/10 [00:00<?, ?it/s] 10%|█ | 1/10 [00:00<00:01, 7.75it/s] 20%|██ | 2/10 [00:00<00:01, 7.70it/s] 30%|███ | 3/10 [00:00<00:00, 7.71it/s] 40%|████ | 4/10 [00:00<00:00, 7.69it/s] 50%|█████ | 5/10 [00:00<00:00, 7.68it/s] 60%|██████ | 6/10 [00:00<00:00, 7.69it/s] 70%|███████ | 7/10 [00:00<00:00, 7.68it/s] 80%|████████ | 8/10 [00:01<00:00, 7.69it/s] 90%|█████████ | 9/10 [00:01<00:00, 7.70it/s] 100%|██████████| 10/10 [00:01<00:00, 7.70it/s] 100%|██████████| 10/10 [00:01<00:00, 7.69it/s]
Prediction
fermatresearch/sdxl-weighting-prompts:66175a2993706e1721076d5c7f92f0c81ec6d065ec20717527f05dd8528a1fc7ID4ap4dljb5j4zohmystqp7fce7eStatusSucceededSourceWebHardwareA100 (40GB)Total durationCreatedInput
- seed
- 12345
- width
- 1024
- height
- 1024
- prompt
- a legendary bird is flying under the sea water staring at a multicolor sky, wallpaper, corals and fish are swimming around
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER
- lora_scale
- 0.6
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- ugly, blurry, realistic
- prompt_strength
- 0.8
- prompt_weighting
- num_inference_steps
- 50
{ "seed": 12345, "width": 1024, "height": 1024, "prompt": "a legendary bird is flying under the sea water staring at a multicolor sky, wallpaper, corals and fish are swimming around", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "ugly, blurry, realistic", "prompt_strength": 0.8, "prompt_weighting": true, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run fermatresearch/sdxl-weighting-prompts using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "fermatresearch/sdxl-weighting-prompts:66175a2993706e1721076d5c7f92f0c81ec6d065ec20717527f05dd8528a1fc7", { input: { seed: 12345, width: 1024, height: 1024, prompt: "a legendary bird is flying under the sea water staring at a multicolor sky, wallpaper, corals and fish are swimming around", refine: "expert_ensemble_refiner", scheduler: "K_EULER", lora_scale: 0.6, num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "ugly, blurry, realistic", prompt_strength: 0.8, prompt_weighting: true, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run fermatresearch/sdxl-weighting-prompts using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "fermatresearch/sdxl-weighting-prompts:66175a2993706e1721076d5c7f92f0c81ec6d065ec20717527f05dd8528a1fc7", input={ "seed": 12345, "width": 1024, "height": 1024, "prompt": "a legendary bird is flying under the sea water staring at a multicolor sky, wallpaper, corals and fish are swimming around", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "ugly, blurry, realistic", "prompt_strength": 0.8, "prompt_weighting": True, "num_inference_steps": 50 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run fermatresearch/sdxl-weighting-prompts using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "fermatresearch/sdxl-weighting-prompts:66175a2993706e1721076d5c7f92f0c81ec6d065ec20717527f05dd8528a1fc7", "input": { "seed": 12345, "width": 1024, "height": 1024, "prompt": "a legendary bird is flying under the sea water staring at a multicolor sky, wallpaper, corals and fish are swimming around", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "ugly, blurry, realistic", "prompt_strength": 0.8, "prompt_weighting": true, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/fermatresearch/sdxl-weighting-prompts@sha256:66175a2993706e1721076d5c7f92f0c81ec6d065ec20717527f05dd8528a1fc7 \ -i 'seed=12345' \ -i 'width=1024' \ -i 'height=1024' \ -i 'prompt="a legendary bird is flying under the sea water staring at a multicolor sky, wallpaper, corals and fish are swimming around"' \ -i 'refine="expert_ensemble_refiner"' \ -i 'scheduler="K_EULER"' \ -i 'lora_scale=0.6' \ -i 'num_outputs=1' \ -i 'guidance_scale=7.5' \ -i 'apply_watermark=true' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt="ugly, blurry, realistic"' \ -i 'prompt_strength=0.8' \ -i 'prompt_weighting=true' \ -i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/fermatresearch/sdxl-weighting-prompts@sha256:66175a2993706e1721076d5c7f92f0c81ec6d065ec20717527f05dd8528a1fc7
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "seed": 12345, "width": 1024, "height": 1024, "prompt": "a legendary bird is flying under the sea water staring at a multicolor sky, wallpaper, corals and fish are swimming around", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "ugly, blurry, realistic", "prompt_strength": 0.8, "prompt_weighting": true, "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-08-17T14:16:50.646699Z", "created_at": "2023-08-17T14:16:42.599317Z", "data_removed": false, "error": null, "id": "4ap4dljb5j4zohmystqp7fce7e", "input": { "seed": 12345, "width": 1024, "height": 1024, "prompt": "a legendary bird is flying under the sea water staring at a multicolor sky, wallpaper, corals and fish are swimming around", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "ugly, blurry, realistic", "prompt_strength": 0.8, "prompt_weighting": true, "num_inference_steps": 50 }, "logs": "Using seed: 12345\nPrompt: a legendary bird is flying under the sea water staring at a multicolor sky, wallpaper, corals and fish are swimming around\nUsing Compel for prompt embeddings\ntxt2img mode\nPrompt embeddings calculated by Compel\n 0%| | 0/40 [00:00<?, ?it/s]\n 2%|▎ | 1/40 [00:00<00:05, 7.44it/s]\n 5%|▌ | 2/40 [00:00<00:04, 7.96it/s]\n 8%|▊ | 3/40 [00:00<00:04, 8.18it/s]\n 10%|█ | 4/40 [00:00<00:04, 8.34it/s]\n 12%|█▎ | 5/40 [00:00<00:04, 8.44it/s]\n 15%|█▌ | 6/40 [00:00<00:04, 8.35it/s]\n 18%|█▊ | 7/40 [00:00<00:03, 8.43it/s]\n 20%|██ | 8/40 [00:00<00:03, 8.47it/s]\n 22%|██▎ | 9/40 [00:01<00:03, 8.50it/s]\n 25%|██▌ | 10/40 [00:01<00:03, 8.52it/s]\n 28%|██▊ | 11/40 [00:01<00:03, 8.54it/s]\n 30%|███ | 12/40 [00:01<00:03, 8.52it/s]\n 32%|███▎ | 13/40 [00:01<00:03, 8.54it/s]\n 35%|███▌ | 14/40 [00:01<00:03, 8.55it/s]\n 38%|███▊ | 15/40 [00:01<00:02, 8.49it/s]\n 40%|████ | 16/40 [00:01<00:02, 8.51it/s]\n 42%|████▎ | 17/40 [00:02<00:02, 8.52it/s]\n 45%|████▌ | 18/40 [00:02<00:02, 8.53it/s]\n 48%|████▊ | 19/40 [00:02<00:02, 8.51it/s]\n 50%|█████ | 20/40 [00:02<00:02, 8.52it/s]\n 52%|█████▎ | 21/40 [00:02<00:02, 8.46it/s]\n 55%|█████▌ | 22/40 [00:02<00:02, 8.50it/s]\n 57%|█████▊ | 23/40 [00:02<00:02, 8.29it/s]\n 60%|██████ | 24/40 [00:02<00:01, 8.37it/s]\n 62%|██████▎ | 25/40 [00:02<00:01, 8.41it/s]\n 65%|██████▌ | 26/40 [00:03<00:01, 8.43it/s]\n 68%|██████▊ | 27/40 [00:03<00:01, 8.46it/s]\n 70%|███████ | 28/40 [00:03<00:01, 8.48it/s]\n 72%|███████▎ | 29/40 [00:03<00:01, 8.48it/s]\n 75%|███████▌ | 30/40 [00:03<00:01, 8.49it/s]\n 78%|███████▊ | 31/40 [00:03<00:01, 8.50it/s]\n 80%|████████ | 32/40 [00:03<00:00, 8.10it/s]\n 82%|████████▎ | 33/40 [00:03<00:00, 8.22it/s]\n 85%|████████▌ | 34/40 [00:04<00:00, 8.31it/s]\n 88%|████████▊ | 35/40 [00:04<00:00, 8.37it/s]\n 90%|█████████ | 36/40 [00:04<00:00, 8.41it/s]\n 92%|█████████▎| 37/40 [00:04<00:00, 8.42it/s]\n 95%|█████████▌| 38/40 [00:04<00:00, 8.45it/s]\n 98%|█████████▊| 39/40 [00:04<00:00, 8.46it/s]\n100%|██████████| 40/40 [00:04<00:00, 8.47it/s]\n100%|██████████| 40/40 [00:04<00:00, 8.42it/s]\n 0%| | 0/10 [00:00<?, ?it/s]\n 10%|█ | 1/10 [00:00<00:01, 7.73it/s]\n 20%|██ | 2/10 [00:00<00:01, 7.72it/s]\n 30%|███ | 3/10 [00:00<00:00, 7.71it/s]\n 40%|████ | 4/10 [00:00<00:00, 7.69it/s]\n 50%|█████ | 5/10 [00:00<00:00, 7.69it/s]\n 60%|██████ | 6/10 [00:00<00:00, 7.69it/s]\n 70%|███████ | 7/10 [00:00<00:00, 7.69it/s]\n 80%|████████ | 8/10 [00:01<00:00, 7.70it/s]\n 90%|█████████ | 9/10 [00:01<00:00, 7.69it/s]\n100%|██████████| 10/10 [00:01<00:00, 7.69it/s]\n100%|██████████| 10/10 [00:01<00:00, 7.69it/s]", "metrics": { "predict_time": 8.153303, "total_time": 8.047382 }, "output": [ "https://replicate.delivery/pbxt/uPY4g87AG24CD5gh9DNRjUaFYm2RSMe5C6SeUCEsvZUR39aRA/out-0.png" ], "started_at": "2023-08-17T14:16:42.493396Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/4ap4dljb5j4zohmystqp7fce7e", "cancel": "https://api.replicate.com/v1/predictions/4ap4dljb5j4zohmystqp7fce7e/cancel" }, "version": "66175a2993706e1721076d5c7f92f0c81ec6d065ec20717527f05dd8528a1fc7" }
Generated inUsing seed: 12345 Prompt: a legendary bird is flying under the sea water staring at a multicolor sky, wallpaper, corals and fish are swimming around Using Compel for prompt embeddings txt2img mode Prompt embeddings calculated by Compel 0%| | 0/40 [00:00<?, ?it/s] 2%|▎ | 1/40 [00:00<00:05, 7.44it/s] 5%|▌ | 2/40 [00:00<00:04, 7.96it/s] 8%|▊ | 3/40 [00:00<00:04, 8.18it/s] 10%|█ | 4/40 [00:00<00:04, 8.34it/s] 12%|█▎ | 5/40 [00:00<00:04, 8.44it/s] 15%|█▌ | 6/40 [00:00<00:04, 8.35it/s] 18%|█▊ | 7/40 [00:00<00:03, 8.43it/s] 20%|██ | 8/40 [00:00<00:03, 8.47it/s] 22%|██▎ | 9/40 [00:01<00:03, 8.50it/s] 25%|██▌ | 10/40 [00:01<00:03, 8.52it/s] 28%|██▊ | 11/40 [00:01<00:03, 8.54it/s] 30%|███ | 12/40 [00:01<00:03, 8.52it/s] 32%|███▎ | 13/40 [00:01<00:03, 8.54it/s] 35%|███▌ | 14/40 [00:01<00:03, 8.55it/s] 38%|███▊ | 15/40 [00:01<00:02, 8.49it/s] 40%|████ | 16/40 [00:01<00:02, 8.51it/s] 42%|████▎ | 17/40 [00:02<00:02, 8.52it/s] 45%|████▌ | 18/40 [00:02<00:02, 8.53it/s] 48%|████▊ | 19/40 [00:02<00:02, 8.51it/s] 50%|█████ | 20/40 [00:02<00:02, 8.52it/s] 52%|█████▎ | 21/40 [00:02<00:02, 8.46it/s] 55%|█████▌ | 22/40 [00:02<00:02, 8.50it/s] 57%|█████▊ | 23/40 [00:02<00:02, 8.29it/s] 60%|██████ | 24/40 [00:02<00:01, 8.37it/s] 62%|██████▎ | 25/40 [00:02<00:01, 8.41it/s] 65%|██████▌ | 26/40 [00:03<00:01, 8.43it/s] 68%|██████▊ | 27/40 [00:03<00:01, 8.46it/s] 70%|███████ | 28/40 [00:03<00:01, 8.48it/s] 72%|███████▎ | 29/40 [00:03<00:01, 8.48it/s] 75%|███████▌ | 30/40 [00:03<00:01, 8.49it/s] 78%|███████▊ | 31/40 [00:03<00:01, 8.50it/s] 80%|████████ | 32/40 [00:03<00:00, 8.10it/s] 82%|████████▎ | 33/40 [00:03<00:00, 8.22it/s] 85%|████████▌ | 34/40 [00:04<00:00, 8.31it/s] 88%|████████▊ | 35/40 [00:04<00:00, 8.37it/s] 90%|█████████ | 36/40 [00:04<00:00, 8.41it/s] 92%|█████████▎| 37/40 [00:04<00:00, 8.42it/s] 95%|█████████▌| 38/40 [00:04<00:00, 8.45it/s] 98%|█████████▊| 39/40 [00:04<00:00, 8.46it/s] 100%|██████████| 40/40 [00:04<00:00, 8.47it/s] 100%|██████████| 40/40 [00:04<00:00, 8.42it/s] 0%| | 0/10 [00:00<?, ?it/s] 10%|█ | 1/10 [00:00<00:01, 7.73it/s] 20%|██ | 2/10 [00:00<00:01, 7.72it/s] 30%|███ | 3/10 [00:00<00:00, 7.71it/s] 40%|████ | 4/10 [00:00<00:00, 7.69it/s] 50%|█████ | 5/10 [00:00<00:00, 7.69it/s] 60%|██████ | 6/10 [00:00<00:00, 7.69it/s] 70%|███████ | 7/10 [00:00<00:00, 7.69it/s] 80%|████████ | 8/10 [00:01<00:00, 7.70it/s] 90%|█████████ | 9/10 [00:01<00:00, 7.69it/s] 100%|██████████| 10/10 [00:01<00:00, 7.69it/s] 100%|██████████| 10/10 [00:01<00:00, 7.69it/s]
Prediction
fermatresearch/sdxl-weighting-prompts:66175a2993706e1721076d5c7f92f0c81ec6d065ec20717527f05dd8528a1fc7IDus5s7izbrsgk35tbt7nj3hgqjiStatusSucceededSourceWebHardwareA100 (40GB)Total durationCreatedInput
- seed
- 12345
- width
- 1024
- height
- 1024
- prompt
- a legendary bird is flying under the sea water staring at a multicolor sky, wallpaper, (corals and fish are swimming around)0.4
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER
- lora_scale
- 0.6
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- ugly, blurry, realistic
- prompt_strength
- 0.8
- prompt_weighting
- num_inference_steps
- 50
{ "seed": 12345, "width": 1024, "height": 1024, "prompt": "a legendary bird is flying under the sea water staring at a multicolor sky, wallpaper, (corals and fish are swimming around)0.4", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "ugly, blurry, realistic", "prompt_strength": 0.8, "prompt_weighting": true, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run fermatresearch/sdxl-weighting-prompts using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "fermatresearch/sdxl-weighting-prompts:66175a2993706e1721076d5c7f92f0c81ec6d065ec20717527f05dd8528a1fc7", { input: { seed: 12345, width: 1024, height: 1024, prompt: "a legendary bird is flying under the sea water staring at a multicolor sky, wallpaper, (corals and fish are swimming around)0.4", refine: "expert_ensemble_refiner", scheduler: "K_EULER", lora_scale: 0.6, num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "ugly, blurry, realistic", prompt_strength: 0.8, prompt_weighting: true, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run fermatresearch/sdxl-weighting-prompts using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "fermatresearch/sdxl-weighting-prompts:66175a2993706e1721076d5c7f92f0c81ec6d065ec20717527f05dd8528a1fc7", input={ "seed": 12345, "width": 1024, "height": 1024, "prompt": "a legendary bird is flying under the sea water staring at a multicolor sky, wallpaper, (corals and fish are swimming around)0.4", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "ugly, blurry, realistic", "prompt_strength": 0.8, "prompt_weighting": True, "num_inference_steps": 50 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run fermatresearch/sdxl-weighting-prompts using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "fermatresearch/sdxl-weighting-prompts:66175a2993706e1721076d5c7f92f0c81ec6d065ec20717527f05dd8528a1fc7", "input": { "seed": 12345, "width": 1024, "height": 1024, "prompt": "a legendary bird is flying under the sea water staring at a multicolor sky, wallpaper, (corals and fish are swimming around)0.4", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "ugly, blurry, realistic", "prompt_strength": 0.8, "prompt_weighting": true, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/fermatresearch/sdxl-weighting-prompts@sha256:66175a2993706e1721076d5c7f92f0c81ec6d065ec20717527f05dd8528a1fc7 \ -i 'seed=12345' \ -i 'width=1024' \ -i 'height=1024' \ -i 'prompt="a legendary bird is flying under the sea water staring at a multicolor sky, wallpaper, (corals and fish are swimming around)0.4"' \ -i 'refine="expert_ensemble_refiner"' \ -i 'scheduler="K_EULER"' \ -i 'lora_scale=0.6' \ -i 'num_outputs=1' \ -i 'guidance_scale=7.5' \ -i 'apply_watermark=true' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt="ugly, blurry, realistic"' \ -i 'prompt_strength=0.8' \ -i 'prompt_weighting=true' \ -i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/fermatresearch/sdxl-weighting-prompts@sha256:66175a2993706e1721076d5c7f92f0c81ec6d065ec20717527f05dd8528a1fc7
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "seed": 12345, "width": 1024, "height": 1024, "prompt": "a legendary bird is flying under the sea water staring at a multicolor sky, wallpaper, (corals and fish are swimming around)0.4", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "ugly, blurry, realistic", "prompt_strength": 0.8, "prompt_weighting": true, "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-08-17T14:18:05.208362Z", "created_at": "2023-08-17T14:17:56.886546Z", "data_removed": false, "error": null, "id": "us5s7izbrsgk35tbt7nj3hgqji", "input": { "seed": 12345, "width": 1024, "height": 1024, "prompt": "a legendary bird is flying under the sea water staring at a multicolor sky, wallpaper, (corals and fish are swimming around)0.4", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "ugly, blurry, realistic", "prompt_strength": 0.8, "prompt_weighting": true, "num_inference_steps": 50 }, "logs": "Using seed: 12345\nPrompt: a legendary bird is flying under the sea water staring at a multicolor sky, wallpaper, (corals and fish are swimming around)0.4\nUsing Compel for prompt embeddings\ntxt2img mode\nPrompt embeddings calculated by Compel\n 0%| | 0/40 [00:00<?, ?it/s]\n 2%|▎ | 1/40 [00:00<00:05, 6.87it/s]\n 5%|▌ | 2/40 [00:00<00:04, 7.66it/s]\n 8%|▊ | 3/40 [00:00<00:04, 8.07it/s]\n 10%|█ | 4/40 [00:00<00:04, 8.27it/s]\n 12%|█▎ | 5/40 [00:00<00:04, 8.38it/s]\n 15%|█▌ | 6/40 [00:00<00:04, 8.45it/s]\n 18%|█▊ | 7/40 [00:00<00:03, 8.50it/s]\n 20%|██ | 8/40 [00:00<00:03, 8.42it/s]\n 22%|██▎ | 9/40 [00:01<00:03, 8.47it/s]\n 25%|██▌ | 10/40 [00:01<00:03, 8.50it/s]\n 28%|██▊ | 11/40 [00:01<00:03, 8.52it/s]\n 30%|███ | 12/40 [00:01<00:03, 8.52it/s]\n 32%|███▎ | 13/40 [00:01<00:03, 8.53it/s]\n 35%|███▌ | 14/40 [00:01<00:03, 8.54it/s]\n 38%|███▊ | 15/40 [00:01<00:02, 8.42it/s]\n 40%|████ | 16/40 [00:01<00:02, 8.46it/s]\n 42%|████▎ | 17/40 [00:02<00:02, 8.25it/s]\n 45%|████▌ | 18/40 [00:02<00:02, 8.35it/s]\n 48%|████▊ | 19/40 [00:02<00:02, 8.41it/s]\n 50%|█████ | 20/40 [00:02<00:02, 8.45it/s]\n 52%|█████▎ | 21/40 [00:02<00:02, 8.48it/s]\n 55%|█████▌ | 22/40 [00:02<00:02, 8.51it/s]\n 57%|█████▊ | 23/40 [00:02<00:02, 8.50it/s]\n 60%|██████ | 24/40 [00:02<00:01, 8.52it/s]\n 62%|██████▎ | 25/40 [00:02<00:01, 8.50it/s]\n 65%|██████▌ | 26/40 [00:03<00:01, 8.51it/s]\n 68%|██████▊ | 27/40 [00:03<00:01, 8.53it/s]\n 70%|███████ | 28/40 [00:03<00:01, 8.54it/s]\n 72%|███████▎ | 29/40 [00:03<00:01, 8.55it/s]\n 75%|███████▌ | 30/40 [00:03<00:01, 8.55it/s]\n 78%|███████▊ | 31/40 [00:03<00:01, 8.55it/s]\n 80%|████████ | 32/40 [00:03<00:00, 8.53it/s]\n 82%|████████▎ | 33/40 [00:03<00:00, 8.53it/s]\n 85%|████████▌ | 34/40 [00:04<00:00, 8.50it/s]\n 88%|████████▊ | 35/40 [00:04<00:00, 8.34it/s]\n 90%|█████████ | 36/40 [00:04<00:00, 8.40it/s]\n 92%|█████████▎| 37/40 [00:04<00:00, 8.44it/s]\n 95%|█████████▌| 38/40 [00:04<00:00, 8.47it/s]\n 98%|█████████▊| 39/40 [00:04<00:00, 8.49it/s]\n100%|██████████| 40/40 [00:04<00:00, 8.44it/s]\n100%|██████████| 40/40 [00:04<00:00, 8.43it/s]\n 0%| | 0/10 [00:00<?, ?it/s]\n 10%|█ | 1/10 [00:00<00:01, 7.72it/s]\n 20%|██ | 2/10 [00:00<00:01, 7.67it/s]\n 30%|███ | 3/10 [00:00<00:00, 7.67it/s]\n 40%|████ | 4/10 [00:00<00:00, 7.67it/s]\n 50%|█████ | 5/10 [00:00<00:00, 7.67it/s]\n 60%|██████ | 6/10 [00:00<00:00, 7.68it/s]\n 70%|███████ | 7/10 [00:00<00:00, 7.69it/s]\n 80%|████████ | 8/10 [00:01<00:00, 7.68it/s]\n 90%|█████████ | 9/10 [00:01<00:00, 7.67it/s]\n100%|██████████| 10/10 [00:01<00:00, 7.68it/s]\n100%|██████████| 10/10 [00:01<00:00, 7.68it/s]", "metrics": { "predict_time": 8.363248, "total_time": 8.321816 }, "output": [ "https://replicate.delivery/pbxt/SvBffoE1nwjKpkDVCxAJIqutrTs2znWCyvY2bzfIrBQ5w71iA/out-0.png" ], "started_at": "2023-08-17T14:17:56.845114Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/us5s7izbrsgk35tbt7nj3hgqji", "cancel": "https://api.replicate.com/v1/predictions/us5s7izbrsgk35tbt7nj3hgqji/cancel" }, "version": "66175a2993706e1721076d5c7f92f0c81ec6d065ec20717527f05dd8528a1fc7" }
Generated inUsing seed: 12345 Prompt: a legendary bird is flying under the sea water staring at a multicolor sky, wallpaper, (corals and fish are swimming around)0.4 Using Compel for prompt embeddings txt2img mode Prompt embeddings calculated by Compel 0%| | 0/40 [00:00<?, ?it/s] 2%|▎ | 1/40 [00:00<00:05, 6.87it/s] 5%|▌ | 2/40 [00:00<00:04, 7.66it/s] 8%|▊ | 3/40 [00:00<00:04, 8.07it/s] 10%|█ | 4/40 [00:00<00:04, 8.27it/s] 12%|█▎ | 5/40 [00:00<00:04, 8.38it/s] 15%|█▌ | 6/40 [00:00<00:04, 8.45it/s] 18%|█▊ | 7/40 [00:00<00:03, 8.50it/s] 20%|██ | 8/40 [00:00<00:03, 8.42it/s] 22%|██▎ | 9/40 [00:01<00:03, 8.47it/s] 25%|██▌ | 10/40 [00:01<00:03, 8.50it/s] 28%|██▊ | 11/40 [00:01<00:03, 8.52it/s] 30%|███ | 12/40 [00:01<00:03, 8.52it/s] 32%|███▎ | 13/40 [00:01<00:03, 8.53it/s] 35%|███▌ | 14/40 [00:01<00:03, 8.54it/s] 38%|███▊ | 15/40 [00:01<00:02, 8.42it/s] 40%|████ | 16/40 [00:01<00:02, 8.46it/s] 42%|████▎ | 17/40 [00:02<00:02, 8.25it/s] 45%|████▌ | 18/40 [00:02<00:02, 8.35it/s] 48%|████▊ | 19/40 [00:02<00:02, 8.41it/s] 50%|█████ | 20/40 [00:02<00:02, 8.45it/s] 52%|█████▎ | 21/40 [00:02<00:02, 8.48it/s] 55%|█████▌ | 22/40 [00:02<00:02, 8.51it/s] 57%|█████▊ | 23/40 [00:02<00:02, 8.50it/s] 60%|██████ | 24/40 [00:02<00:01, 8.52it/s] 62%|██████▎ | 25/40 [00:02<00:01, 8.50it/s] 65%|██████▌ | 26/40 [00:03<00:01, 8.51it/s] 68%|██████▊ | 27/40 [00:03<00:01, 8.53it/s] 70%|███████ | 28/40 [00:03<00:01, 8.54it/s] 72%|███████▎ | 29/40 [00:03<00:01, 8.55it/s] 75%|███████▌ | 30/40 [00:03<00:01, 8.55it/s] 78%|███████▊ | 31/40 [00:03<00:01, 8.55it/s] 80%|████████ | 32/40 [00:03<00:00, 8.53it/s] 82%|████████▎ | 33/40 [00:03<00:00, 8.53it/s] 85%|████████▌ | 34/40 [00:04<00:00, 8.50it/s] 88%|████████▊ | 35/40 [00:04<00:00, 8.34it/s] 90%|█████████ | 36/40 [00:04<00:00, 8.40it/s] 92%|█████████▎| 37/40 [00:04<00:00, 8.44it/s] 95%|█████████▌| 38/40 [00:04<00:00, 8.47it/s] 98%|█████████▊| 39/40 [00:04<00:00, 8.49it/s] 100%|██████████| 40/40 [00:04<00:00, 8.44it/s] 100%|██████████| 40/40 [00:04<00:00, 8.43it/s] 0%| | 0/10 [00:00<?, ?it/s] 10%|█ | 1/10 [00:00<00:01, 7.72it/s] 20%|██ | 2/10 [00:00<00:01, 7.67it/s] 30%|███ | 3/10 [00:00<00:00, 7.67it/s] 40%|████ | 4/10 [00:00<00:00, 7.67it/s] 50%|█████ | 5/10 [00:00<00:00, 7.67it/s] 60%|██████ | 6/10 [00:00<00:00, 7.68it/s] 70%|███████ | 7/10 [00:00<00:00, 7.69it/s] 80%|████████ | 8/10 [00:01<00:00, 7.68it/s] 90%|█████████ | 9/10 [00:01<00:00, 7.67it/s] 100%|██████████| 10/10 [00:01<00:00, 7.68it/s] 100%|██████████| 10/10 [00:01<00:00, 7.68it/s]
Want to make some of these yourself?
Run this model