Readme
This model doesn't have a readme.
Synthiola is a synthetic being living in SDXL latent space: https://www.fabianmosele.com/synthiola
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run fmosele/synthiola using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"fmosele/synthiola:7e2989f94572be82f355ee7cecb4bb1dfe1b7a403bc9a3bebc023692540027da",
{
input: {
width: 1024,
height: 1024,
prompt: "A photo of TOK female eating a burger sloppy",
refine: "no_refiner",
scheduler: "K_EULER",
lora_scale: 1,
num_outputs: 1,
guidance_scale: 7.5,
apply_watermark: true,
high_noise_frac: 0.8,
negative_prompt: "",
prompt_strength: 0.8,
num_inference_steps: 50
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run fmosele/synthiola using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"fmosele/synthiola:7e2989f94572be82f355ee7cecb4bb1dfe1b7a403bc9a3bebc023692540027da",
input={
"width": 1024,
"height": 1024,
"prompt": "A photo of TOK female eating a burger sloppy",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 1,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": True,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run fmosele/synthiola using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "7e2989f94572be82f355ee7cecb4bb1dfe1b7a403bc9a3bebc023692540027da",
"input": {
"width": 1024,
"height": 1024,
"prompt": "A photo of TOK female eating a burger sloppy",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 1,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2023-08-15T12:56:14.924436Z",
"created_at": "2023-08-15T12:55:59.223502Z",
"data_removed": false,
"error": null,
"id": "3khauotb5pqigym2euqwatuyby",
"input": {
"width": 1024,
"height": 1024,
"prompt": "A photo of TOK female eating a burger sloppy",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 1,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"prompt_strength": 0.8,
"num_inference_steps": 50
},
"logs": "Using seed: 10635\nPrompt: A photo of <s0><s1> female eating a burger sloppy\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:13, 3.71it/s]\n 4%|▍ | 2/50 [00:00<00:12, 3.70it/s]\n 6%|▌ | 3/50 [00:00<00:12, 3.69it/s]\n 8%|▊ | 4/50 [00:01<00:12, 3.67it/s]\n 10%|█ | 5/50 [00:01<00:12, 3.68it/s]\n 12%|█▏ | 6/50 [00:01<00:11, 3.69it/s]\n 14%|█▍ | 7/50 [00:01<00:11, 3.69it/s]\n 16%|█▌ | 8/50 [00:02<00:11, 3.69it/s]\n 18%|█▊ | 9/50 [00:02<00:11, 3.69it/s]\n 20%|██ | 10/50 [00:02<00:10, 3.69it/s]\n 22%|██▏ | 11/50 [00:02<00:10, 3.69it/s]\n 24%|██▍ | 12/50 [00:03<00:10, 3.69it/s]\n 26%|██▌ | 13/50 [00:03<00:10, 3.69it/s]\n 28%|██▊ | 14/50 [00:03<00:09, 3.69it/s]\n 30%|███ | 15/50 [00:04<00:09, 3.69it/s]\n 32%|███▏ | 16/50 [00:04<00:09, 3.69it/s]\n 34%|███▍ | 17/50 [00:04<00:08, 3.69it/s]\n 36%|███▌ | 18/50 [00:04<00:08, 3.69it/s]\n 38%|███▊ | 19/50 [00:05<00:08, 3.69it/s]\n 40%|████ | 20/50 [00:05<00:08, 3.69it/s]\n 42%|████▏ | 21/50 [00:05<00:07, 3.69it/s]\n 44%|████▍ | 22/50 [00:05<00:07, 3.69it/s]\n 46%|████▌ | 23/50 [00:06<00:07, 3.69it/s]\n 48%|████▊ | 24/50 [00:06<00:07, 3.68it/s]\n 50%|█████ | 25/50 [00:06<00:06, 3.69it/s]\n 52%|█████▏ | 26/50 [00:07<00:06, 3.68it/s]\n 54%|█████▍ | 27/50 [00:07<00:06, 3.68it/s]\n 56%|█████▌ | 28/50 [00:07<00:05, 3.68it/s]\n 58%|█████▊ | 29/50 [00:07<00:05, 3.68it/s]\n 60%|██████ | 30/50 [00:08<00:05, 3.68it/s]\n 62%|██████▏ | 31/50 [00:08<00:05, 3.68it/s]\n 64%|██████▍ | 32/50 [00:08<00:04, 3.68it/s]\n 66%|██████▌ | 33/50 [00:08<00:04, 3.68it/s]\n 68%|██████▊ | 34/50 [00:09<00:04, 3.68it/s]\n 70%|███████ | 35/50 [00:09<00:04, 3.68it/s]\n 72%|███████▏ | 36/50 [00:09<00:03, 3.68it/s]\n 74%|███████▍ | 37/50 [00:10<00:03, 3.68it/s]\n 76%|███████▌ | 38/50 [00:10<00:03, 3.68it/s]\n 78%|███████▊ | 39/50 [00:10<00:02, 3.68it/s]\n 80%|████████ | 40/50 [00:10<00:02, 3.68it/s]\n 82%|████████▏ | 41/50 [00:11<00:02, 3.68it/s]\n 84%|████████▍ | 42/50 [00:11<00:02, 3.68it/s]\n 86%|████████▌ | 43/50 [00:11<00:01, 3.68it/s]\n 88%|████████▊ | 44/50 [00:11<00:01, 3.68it/s]\n 90%|█████████ | 45/50 [00:12<00:01, 3.68it/s]\n 92%|█████████▏| 46/50 [00:12<00:01, 3.67it/s]\n 94%|█████████▍| 47/50 [00:12<00:00, 3.67it/s]\n 96%|█████████▌| 48/50 [00:13<00:00, 3.67it/s]\n 98%|█████████▊| 49/50 [00:13<00:00, 3.67it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.67it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.68it/s]",
"metrics": {
"predict_time": 15.697142,
"total_time": 15.700934
},
"output": [
"https://replicate.delivery/pbxt/77czFskV3M58HBLS0jdBMNrCq9vwC4dosXvCe59wg8j2PJtIA/out-0.png"
],
"started_at": "2023-08-15T12:55:59.227294Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/3khauotb5pqigym2euqwatuyby",
"cancel": "https://api.replicate.com/v1/predictions/3khauotb5pqigym2euqwatuyby/cancel"
},
"version": "7e2989f94572be82f355ee7cecb4bb1dfe1b7a403bc9a3bebc023692540027da"
}
Using seed: 10635
Prompt: A photo of <s0><s1> female eating a burger sloppy
txt2img mode
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:13, 3.71it/s]
4%|▍ | 2/50 [00:00<00:12, 3.70it/s]
6%|▌ | 3/50 [00:00<00:12, 3.69it/s]
8%|▊ | 4/50 [00:01<00:12, 3.67it/s]
10%|█ | 5/50 [00:01<00:12, 3.68it/s]
12%|█▏ | 6/50 [00:01<00:11, 3.69it/s]
14%|█▍ | 7/50 [00:01<00:11, 3.69it/s]
16%|█▌ | 8/50 [00:02<00:11, 3.69it/s]
18%|█▊ | 9/50 [00:02<00:11, 3.69it/s]
20%|██ | 10/50 [00:02<00:10, 3.69it/s]
22%|██▏ | 11/50 [00:02<00:10, 3.69it/s]
24%|██▍ | 12/50 [00:03<00:10, 3.69it/s]
26%|██▌ | 13/50 [00:03<00:10, 3.69it/s]
28%|██▊ | 14/50 [00:03<00:09, 3.69it/s]
30%|███ | 15/50 [00:04<00:09, 3.69it/s]
32%|███▏ | 16/50 [00:04<00:09, 3.69it/s]
34%|███▍ | 17/50 [00:04<00:08, 3.69it/s]
36%|███▌ | 18/50 [00:04<00:08, 3.69it/s]
38%|███▊ | 19/50 [00:05<00:08, 3.69it/s]
40%|████ | 20/50 [00:05<00:08, 3.69it/s]
42%|████▏ | 21/50 [00:05<00:07, 3.69it/s]
44%|████▍ | 22/50 [00:05<00:07, 3.69it/s]
46%|████▌ | 23/50 [00:06<00:07, 3.69it/s]
48%|████▊ | 24/50 [00:06<00:07, 3.68it/s]
50%|█████ | 25/50 [00:06<00:06, 3.69it/s]
52%|█████▏ | 26/50 [00:07<00:06, 3.68it/s]
54%|█████▍ | 27/50 [00:07<00:06, 3.68it/s]
56%|█████▌ | 28/50 [00:07<00:05, 3.68it/s]
58%|█████▊ | 29/50 [00:07<00:05, 3.68it/s]
60%|██████ | 30/50 [00:08<00:05, 3.68it/s]
62%|██████▏ | 31/50 [00:08<00:05, 3.68it/s]
64%|██████▍ | 32/50 [00:08<00:04, 3.68it/s]
66%|██████▌ | 33/50 [00:08<00:04, 3.68it/s]
68%|██████▊ | 34/50 [00:09<00:04, 3.68it/s]
70%|███████ | 35/50 [00:09<00:04, 3.68it/s]
72%|███████▏ | 36/50 [00:09<00:03, 3.68it/s]
74%|███████▍ | 37/50 [00:10<00:03, 3.68it/s]
76%|███████▌ | 38/50 [00:10<00:03, 3.68it/s]
78%|███████▊ | 39/50 [00:10<00:02, 3.68it/s]
80%|████████ | 40/50 [00:10<00:02, 3.68it/s]
82%|████████▏ | 41/50 [00:11<00:02, 3.68it/s]
84%|████████▍ | 42/50 [00:11<00:02, 3.68it/s]
86%|████████▌ | 43/50 [00:11<00:01, 3.68it/s]
88%|████████▊ | 44/50 [00:11<00:01, 3.68it/s]
90%|█████████ | 45/50 [00:12<00:01, 3.68it/s]
92%|█████████▏| 46/50 [00:12<00:01, 3.67it/s]
94%|█████████▍| 47/50 [00:12<00:00, 3.67it/s]
96%|█████████▌| 48/50 [00:13<00:00, 3.67it/s]
98%|█████████▊| 49/50 [00:13<00:00, 3.67it/s]
100%|██████████| 50/50 [00:13<00:00, 3.67it/s]
100%|██████████| 50/50 [00:13<00:00, 3.68it/s]
This model costs approximately $0.015 to run on Replicate, or 66 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.
This model runs on Nvidia L40S GPU hardware. Predictions typically complete within 16 seconds.
This model doesn't have a readme.
This model is cold. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
Using seed: 10635
Prompt: A photo of <s0><s1> female eating a burger sloppy
txt2img mode
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:13, 3.71it/s]
4%|▍ | 2/50 [00:00<00:12, 3.70it/s]
6%|▌ | 3/50 [00:00<00:12, 3.69it/s]
8%|▊ | 4/50 [00:01<00:12, 3.67it/s]
10%|█ | 5/50 [00:01<00:12, 3.68it/s]
12%|█▏ | 6/50 [00:01<00:11, 3.69it/s]
14%|█▍ | 7/50 [00:01<00:11, 3.69it/s]
16%|█▌ | 8/50 [00:02<00:11, 3.69it/s]
18%|█▊ | 9/50 [00:02<00:11, 3.69it/s]
20%|██ | 10/50 [00:02<00:10, 3.69it/s]
22%|██▏ | 11/50 [00:02<00:10, 3.69it/s]
24%|██▍ | 12/50 [00:03<00:10, 3.69it/s]
26%|██▌ | 13/50 [00:03<00:10, 3.69it/s]
28%|██▊ | 14/50 [00:03<00:09, 3.69it/s]
30%|███ | 15/50 [00:04<00:09, 3.69it/s]
32%|███▏ | 16/50 [00:04<00:09, 3.69it/s]
34%|███▍ | 17/50 [00:04<00:08, 3.69it/s]
36%|███▌ | 18/50 [00:04<00:08, 3.69it/s]
38%|███▊ | 19/50 [00:05<00:08, 3.69it/s]
40%|████ | 20/50 [00:05<00:08, 3.69it/s]
42%|████▏ | 21/50 [00:05<00:07, 3.69it/s]
44%|████▍ | 22/50 [00:05<00:07, 3.69it/s]
46%|████▌ | 23/50 [00:06<00:07, 3.69it/s]
48%|████▊ | 24/50 [00:06<00:07, 3.68it/s]
50%|█████ | 25/50 [00:06<00:06, 3.69it/s]
52%|█████▏ | 26/50 [00:07<00:06, 3.68it/s]
54%|█████▍ | 27/50 [00:07<00:06, 3.68it/s]
56%|█████▌ | 28/50 [00:07<00:05, 3.68it/s]
58%|█████▊ | 29/50 [00:07<00:05, 3.68it/s]
60%|██████ | 30/50 [00:08<00:05, 3.68it/s]
62%|██████▏ | 31/50 [00:08<00:05, 3.68it/s]
64%|██████▍ | 32/50 [00:08<00:04, 3.68it/s]
66%|██████▌ | 33/50 [00:08<00:04, 3.68it/s]
68%|██████▊ | 34/50 [00:09<00:04, 3.68it/s]
70%|███████ | 35/50 [00:09<00:04, 3.68it/s]
72%|███████▏ | 36/50 [00:09<00:03, 3.68it/s]
74%|███████▍ | 37/50 [00:10<00:03, 3.68it/s]
76%|███████▌ | 38/50 [00:10<00:03, 3.68it/s]
78%|███████▊ | 39/50 [00:10<00:02, 3.68it/s]
80%|████████ | 40/50 [00:10<00:02, 3.68it/s]
82%|████████▏ | 41/50 [00:11<00:02, 3.68it/s]
84%|████████▍ | 42/50 [00:11<00:02, 3.68it/s]
86%|████████▌ | 43/50 [00:11<00:01, 3.68it/s]
88%|████████▊ | 44/50 [00:11<00:01, 3.68it/s]
90%|█████████ | 45/50 [00:12<00:01, 3.68it/s]
92%|█████████▏| 46/50 [00:12<00:01, 3.67it/s]
94%|█████████▍| 47/50 [00:12<00:00, 3.67it/s]
96%|█████████▌| 48/50 [00:13<00:00, 3.67it/s]
98%|█████████▊| 49/50 [00:13<00:00, 3.67it/s]
100%|██████████| 50/50 [00:13<00:00, 3.67it/s]
100%|██████████| 50/50 [00:13<00:00, 3.68it/s]