Readme
This model doesn't have a readme.
A flux lora trained on a 1980s cyberpunk aesthetic
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run fofr/flux-80s-cyberpunk using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"fofr/flux-80s-cyberpunk:5d0cefd0746b833042b384c3a310bc4d1f9d1304ec59ba93e75097d40b967180",
{
input: {
model: "dev",
prompt: "style of 80s cyberpunk, a portrait photo",
go_fast: false,
lora_scale: 1,
megapixels: "1",
num_outputs: 1,
aspect_ratio: "2:3",
output_format: "webp",
guidance_scale: 3.5,
output_quality: 80,
prompt_strength: 0.8,
extra_lora_scale: 1,
num_inference_steps: 28
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run fofr/flux-80s-cyberpunk using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"fofr/flux-80s-cyberpunk:5d0cefd0746b833042b384c3a310bc4d1f9d1304ec59ba93e75097d40b967180",
input={
"model": "dev",
"prompt": "style of 80s cyberpunk, a portrait photo",
"go_fast": False,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "2:3",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run fofr/flux-80s-cyberpunk using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "5d0cefd0746b833042b384c3a310bc4d1f9d1304ec59ba93e75097d40b967180",
"input": {
"model": "dev",
"prompt": "style of 80s cyberpunk, a portrait photo",
"go_fast": false,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "2:3",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2024-08-15T17:28:39.915657Z",
"created_at": "2024-08-15T17:28:19.961000Z",
"data_removed": false,
"error": null,
"id": "fqwhvyaez5rm60chawartrygc0",
"input": {
"model": "dev",
"prompt": "style of 80s cyberpunk, a portrait photo",
"lora_scale": 1,
"num_outputs": 1,
"aspect_ratio": "2:3",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 80,
"num_inference_steps": 28
},
"logs": "Using seed: 32965\nPrompt: style of 80s cyberpunk, a portrait photo\ntxt2img mode\nUsing dev model\nLoading LoRA weights from https://replicate.delivery/yhqm/DDR8uNjZIRZrChCj3jFgxcjMvgyGZcAolnnE7YEva8cEPv0E/trained_model.tar\nEnsuring enough disk space...\nFree disk space: 9726596481024\nDownloading weights: https://replicate.delivery/yhqm/DDR8uNjZIRZrChCj3jFgxcjMvgyGZcAolnnE7YEva8cEPv0E/trained_model.tar\n2024-08-15T17:28:21Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/d2a6f09ee8ecaf46 url=https://replicate.delivery/yhqm/DDR8uNjZIRZrChCj3jFgxcjMvgyGZcAolnnE7YEva8cEPv0E/trained_model.tar\n2024-08-15T17:28:24Z | INFO | [ Complete ] dest=/src/weights-cache/d2a6f09ee8ecaf46 size=\"172 MB\" total_elapsed=2.874s url=https://replicate.delivery/yhqm/DDR8uNjZIRZrChCj3jFgxcjMvgyGZcAolnnE7YEva8cEPv0E/trained_model.tar\nb''\nDownloaded weights in 2.902064800262451 seconds\nLoRA weights loaded successfully\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.75it/s]\n 7%|▋ | 2/28 [00:00<00:06, 4.31it/s]\n 11%|█ | 3/28 [00:00<00:06, 4.05it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.93it/s]\n 18%|█▊ | 5/28 [00:01<00:05, 3.85it/s]\n 21%|██▏ | 6/28 [00:01<00:05, 3.81it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.80it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.78it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.76it/s]\n 36%|███▌ | 10/28 [00:02<00:04, 3.75it/s]\n 39%|███▉ | 11/28 [00:02<00:04, 3.76it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.76it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.75it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.74it/s]\n 54%|█████▎ | 15/28 [00:03<00:03, 3.75it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.75it/s]\n 61%|██████ | 17/28 [00:04<00:02, 3.74it/s]\n 64%|██████▍ | 18/28 [00:04<00:02, 3.74it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.74it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.75it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.74it/s]\n 79%|███████▊ | 22/28 [00:05<00:01, 3.74it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.74it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.75it/s]\n 89%|████████▉ | 25/28 [00:06<00:00, 3.74it/s]\n 93%|█████████▎| 26/28 [00:06<00:00, 3.74it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.74it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.74it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.77it/s]",
"metrics": {
"predict_time": 18.61833491,
"total_time": 19.954657
},
"output": [
"https://replicate.delivery/yhqm/QD8Ioy5NExqSCtBS8hG04XIRQZFaC9pxJemINT1bibyjZfSTA/out-0.webp"
],
"started_at": "2024-08-15T17:28:21.297322Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/fqwhvyaez5rm60chawartrygc0",
"cancel": "https://api.replicate.com/v1/predictions/fqwhvyaez5rm60chawartrygc0/cancel"
},
"version": "5d0cefd0746b833042b384c3a310bc4d1f9d1304ec59ba93e75097d40b967180"
}
Using seed: 32965
Prompt: style of 80s cyberpunk, a portrait photo
txt2img mode
Using dev model
Loading LoRA weights from https://replicate.delivery/yhqm/DDR8uNjZIRZrChCj3jFgxcjMvgyGZcAolnnE7YEva8cEPv0E/trained_model.tar
Ensuring enough disk space...
Free disk space: 9726596481024
Downloading weights: https://replicate.delivery/yhqm/DDR8uNjZIRZrChCj3jFgxcjMvgyGZcAolnnE7YEva8cEPv0E/trained_model.tar
2024-08-15T17:28:21Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/d2a6f09ee8ecaf46 url=https://replicate.delivery/yhqm/DDR8uNjZIRZrChCj3jFgxcjMvgyGZcAolnnE7YEva8cEPv0E/trained_model.tar
2024-08-15T17:28:24Z | INFO | [ Complete ] dest=/src/weights-cache/d2a6f09ee8ecaf46 size="172 MB" total_elapsed=2.874s url=https://replicate.delivery/yhqm/DDR8uNjZIRZrChCj3jFgxcjMvgyGZcAolnnE7YEva8cEPv0E/trained_model.tar
b''
Downloaded weights in 2.902064800262451 seconds
LoRA weights loaded successfully
0%| | 0/28 [00:00<?, ?it/s]
4%|▎ | 1/28 [00:00<00:07, 3.75it/s]
7%|▋ | 2/28 [00:00<00:06, 4.31it/s]
11%|█ | 3/28 [00:00<00:06, 4.05it/s]
14%|█▍ | 4/28 [00:01<00:06, 3.93it/s]
18%|█▊ | 5/28 [00:01<00:05, 3.85it/s]
21%|██▏ | 6/28 [00:01<00:05, 3.81it/s]
25%|██▌ | 7/28 [00:01<00:05, 3.80it/s]
29%|██▊ | 8/28 [00:02<00:05, 3.78it/s]
32%|███▏ | 9/28 [00:02<00:05, 3.76it/s]
36%|███▌ | 10/28 [00:02<00:04, 3.75it/s]
39%|███▉ | 11/28 [00:02<00:04, 3.76it/s]
43%|████▎ | 12/28 [00:03<00:04, 3.76it/s]
46%|████▋ | 13/28 [00:03<00:04, 3.75it/s]
50%|█████ | 14/28 [00:03<00:03, 3.74it/s]
54%|█████▎ | 15/28 [00:03<00:03, 3.75it/s]
57%|█████▋ | 16/28 [00:04<00:03, 3.75it/s]
61%|██████ | 17/28 [00:04<00:02, 3.74it/s]
64%|██████▍ | 18/28 [00:04<00:02, 3.74it/s]
68%|██████▊ | 19/28 [00:05<00:02, 3.74it/s]
71%|███████▏ | 20/28 [00:05<00:02, 3.75it/s]
75%|███████▌ | 21/28 [00:05<00:01, 3.74it/s]
79%|███████▊ | 22/28 [00:05<00:01, 3.74it/s]
82%|████████▏ | 23/28 [00:06<00:01, 3.74it/s]
86%|████████▌ | 24/28 [00:06<00:01, 3.75it/s]
89%|████████▉ | 25/28 [00:06<00:00, 3.74it/s]
93%|█████████▎| 26/28 [00:06<00:00, 3.74it/s]
96%|█████████▋| 27/28 [00:07<00:00, 3.74it/s]
100%|██████████| 28/28 [00:07<00:00, 3.74it/s]
100%|██████████| 28/28 [00:07<00:00, 3.77it/s]
This model costs approximately $0.011 to run on Replicate, or 90 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.
This model runs on Nvidia H100 GPU hardware. Predictions typically complete within 7 seconds.
This model doesn't have a readme.
This model is warm. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
Using seed: 32965
Prompt: style of 80s cyberpunk, a portrait photo
txt2img mode
Using dev model
Loading LoRA weights from https://replicate.delivery/yhqm/DDR8uNjZIRZrChCj3jFgxcjMvgyGZcAolnnE7YEva8cEPv0E/trained_model.tar
Ensuring enough disk space...
Free disk space: 9726596481024
Downloading weights: https://replicate.delivery/yhqm/DDR8uNjZIRZrChCj3jFgxcjMvgyGZcAolnnE7YEva8cEPv0E/trained_model.tar
2024-08-15T17:28:21Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/d2a6f09ee8ecaf46 url=https://replicate.delivery/yhqm/DDR8uNjZIRZrChCj3jFgxcjMvgyGZcAolnnE7YEva8cEPv0E/trained_model.tar
2024-08-15T17:28:24Z | INFO | [ Complete ] dest=/src/weights-cache/d2a6f09ee8ecaf46 size="172 MB" total_elapsed=2.874s url=https://replicate.delivery/yhqm/DDR8uNjZIRZrChCj3jFgxcjMvgyGZcAolnnE7YEva8cEPv0E/trained_model.tar
b''
Downloaded weights in 2.902064800262451 seconds
LoRA weights loaded successfully
0%| | 0/28 [00:00<?, ?it/s]
4%|▎ | 1/28 [00:00<00:07, 3.75it/s]
7%|▋ | 2/28 [00:00<00:06, 4.31it/s]
11%|█ | 3/28 [00:00<00:06, 4.05it/s]
14%|█▍ | 4/28 [00:01<00:06, 3.93it/s]
18%|█▊ | 5/28 [00:01<00:05, 3.85it/s]
21%|██▏ | 6/28 [00:01<00:05, 3.81it/s]
25%|██▌ | 7/28 [00:01<00:05, 3.80it/s]
29%|██▊ | 8/28 [00:02<00:05, 3.78it/s]
32%|███▏ | 9/28 [00:02<00:05, 3.76it/s]
36%|███▌ | 10/28 [00:02<00:04, 3.75it/s]
39%|███▉ | 11/28 [00:02<00:04, 3.76it/s]
43%|████▎ | 12/28 [00:03<00:04, 3.76it/s]
46%|████▋ | 13/28 [00:03<00:04, 3.75it/s]
50%|█████ | 14/28 [00:03<00:03, 3.74it/s]
54%|█████▎ | 15/28 [00:03<00:03, 3.75it/s]
57%|█████▋ | 16/28 [00:04<00:03, 3.75it/s]
61%|██████ | 17/28 [00:04<00:02, 3.74it/s]
64%|██████▍ | 18/28 [00:04<00:02, 3.74it/s]
68%|██████▊ | 19/28 [00:05<00:02, 3.74it/s]
71%|███████▏ | 20/28 [00:05<00:02, 3.75it/s]
75%|███████▌ | 21/28 [00:05<00:01, 3.74it/s]
79%|███████▊ | 22/28 [00:05<00:01, 3.74it/s]
82%|████████▏ | 23/28 [00:06<00:01, 3.74it/s]
86%|████████▌ | 24/28 [00:06<00:01, 3.75it/s]
89%|████████▉ | 25/28 [00:06<00:00, 3.74it/s]
93%|█████████▎| 26/28 [00:06<00:00, 3.74it/s]
96%|█████████▋| 27/28 [00:07<00:00, 3.74it/s]
100%|██████████| 28/28 [00:07<00:00, 3.74it/s]
100%|██████████| 28/28 [00:07<00:00, 3.77it/s]