Readme
This model doesn't have a readme.
A flux lora fine-tuned to produce handwritten text
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run fofr/flux-handwriting using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"fofr/flux-handwriting:786bc82c11569935506ad1d9ae1b712c0a274cc4b75c23d2d9bd42e232540f1e",
{
input: {
model: "dev",
prompt: "HWRIT handwriting saying \"Hello, this is a handrwriting lora\", messy style, blue ink on paper",
go_fast: false,
lora_scale: 1,
megapixels: "1",
num_outputs: 1,
aspect_ratio: "1:1",
output_format: "jpg",
guidance_scale: 3,
output_quality: 80,
prompt_strength: 0.8,
extra_lora_scale: 1,
num_inference_steps: 28
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run fofr/flux-handwriting using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"fofr/flux-handwriting:786bc82c11569935506ad1d9ae1b712c0a274cc4b75c23d2d9bd42e232540f1e",
input={
"model": "dev",
"prompt": "HWRIT handwriting saying \"Hello, this is a handrwriting lora\", messy style, blue ink on paper",
"go_fast": False,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "jpg",
"guidance_scale": 3,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run fofr/flux-handwriting using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "786bc82c11569935506ad1d9ae1b712c0a274cc4b75c23d2d9bd42e232540f1e",
"input": {
"model": "dev",
"prompt": "HWRIT handwriting saying \\"Hello, this is a handrwriting lora\\", messy style, blue ink on paper",
"go_fast": false,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "jpg",
"guidance_scale": 3,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2024-12-14T12:00:45.658069Z",
"created_at": "2024-12-14T12:00:38.074000Z",
"data_removed": false,
"error": null,
"id": "7qc3px66q9rma0ckrm5ahx0bqw",
"input": {
"model": "dev",
"prompt": "HWRIT handwriting saying \"Hello, this is a handrwriting lora\", messy style, blue ink on paper",
"go_fast": false,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "jpg",
"guidance_scale": 3,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
},
"logs": "2024-12-14 12:00:38.739 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys\n2024-12-14 12:00:38.740 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted\nApplying LoRA: 0%| | 0/304 [00:00<?, ?it/s]\nApplying LoRA: 93%|█████████▎| 282/304 [00:00<00:00, 2818.32it/s]\nApplying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2713.85it/s]\n2024-12-14 12:00:38.852 | SUCCESS | fp8.lora_loading:unload_loras:564 - LoRAs unloaded in 0.11s\nfree=28625520238592\nDownloading weights\n2024-12-14T12:00:38Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpbhe_ng3e/weights url=https://replicate.delivery/xezq/xZRxaJALQcpfMalp2QtYfcAoJ4pHl4xDfwTpimS7OXhFlk1nA/trained_model.tar\n2024-12-14T12:00:39Z | INFO | [ Complete ] dest=/tmp/tmpbhe_ng3e/weights size=\"172 MB\" total_elapsed=0.562s url=https://replicate.delivery/xezq/xZRxaJALQcpfMalp2QtYfcAoJ4pHl4xDfwTpimS7OXhFlk1nA/trained_model.tar\nDownloaded weights in 0.59s\n2024-12-14 12:00:39.442 | INFO | fp8.lora_loading:convert_lora_weights:498 - Loading LoRA weights for /src/weights-cache/c3399d28a5b321f6\n2024-12-14 12:00:39.518 | INFO | fp8.lora_loading:convert_lora_weights:519 - LoRA weights loaded\n2024-12-14 12:00:39.518 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys\n2024-12-14 12:00:39.519 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted\nApplying LoRA: 0%| | 0/304 [00:00<?, ?it/s]\nApplying LoRA: 93%|█████████▎| 282/304 [00:00<00:00, 2819.67it/s]\nApplying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2714.94it/s]\n2024-12-14 12:00:39.631 | SUCCESS | fp8.lora_loading:load_lora:539 - LoRA applied in 0.19s\nUsing seed: 14367\n0it [00:00, ?it/s]\n1it [00:00, 8.40it/s]\n2it [00:00, 5.87it/s]\n3it [00:00, 5.36it/s]\n4it [00:00, 5.15it/s]\n5it [00:00, 5.02it/s]\n6it [00:01, 4.93it/s]\n7it [00:01, 4.90it/s]\n8it [00:01, 4.88it/s]\n9it [00:01, 4.87it/s]\n10it [00:01, 4.86it/s]\n11it [00:02, 4.85it/s]\n12it [00:02, 4.83it/s]\n13it [00:02, 4.83it/s]\n14it [00:02, 4.83it/s]\n15it [00:03, 4.82it/s]\n16it [00:03, 4.82it/s]\n17it [00:03, 4.81it/s]\n18it [00:03, 4.81it/s]\n19it [00:03, 4.81it/s]\n20it [00:04, 4.81it/s]\n21it [00:04, 4.82it/s]\n22it [00:04, 4.82it/s]\n23it [00:04, 4.82it/s]\n24it [00:04, 4.81it/s]\n25it [00:05, 4.81it/s]\n26it [00:05, 4.81it/s]\n27it [00:05, 4.81it/s]\n28it [00:05, 4.82it/s]\n28it [00:05, 4.89it/s]\nTotal safe images: 1 out of 1",
"metrics": {
"predict_time": 6.9174548829999996,
"total_time": 7.584069
},
"output": [
"https://replicate.delivery/xezq/OCjL5EeBDzUXNyrCX6q9z7exmhYW4qfVTJJKQCEkjev1WJrPB/out-0.jpg"
],
"started_at": "2024-12-14T12:00:38.740614Z",
"status": "succeeded",
"urls": {
"stream": "https://stream.replicate.com/v1/files/bcwr-brs4oie5w7hlxj6ekx2zcjjbetssqvtjwprbssmatmis4l2lijwq",
"get": "https://api.replicate.com/v1/predictions/7qc3px66q9rma0ckrm5ahx0bqw",
"cancel": "https://api.replicate.com/v1/predictions/7qc3px66q9rma0ckrm5ahx0bqw/cancel"
},
"version": "786bc82c11569935506ad1d9ae1b712c0a274cc4b75c23d2d9bd42e232540f1e"
}
2024-12-14 12:00:38.739 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys
2024-12-14 12:00:38.740 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted
Applying LoRA: 0%| | 0/304 [00:00<?, ?it/s]
Applying LoRA: 93%|█████████▎| 282/304 [00:00<00:00, 2818.32it/s]
Applying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2713.85it/s]
2024-12-14 12:00:38.852 | SUCCESS | fp8.lora_loading:unload_loras:564 - LoRAs unloaded in 0.11s
free=28625520238592
Downloading weights
2024-12-14T12:00:38Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpbhe_ng3e/weights url=https://replicate.delivery/xezq/xZRxaJALQcpfMalp2QtYfcAoJ4pHl4xDfwTpimS7OXhFlk1nA/trained_model.tar
2024-12-14T12:00:39Z | INFO | [ Complete ] dest=/tmp/tmpbhe_ng3e/weights size="172 MB" total_elapsed=0.562s url=https://replicate.delivery/xezq/xZRxaJALQcpfMalp2QtYfcAoJ4pHl4xDfwTpimS7OXhFlk1nA/trained_model.tar
Downloaded weights in 0.59s
2024-12-14 12:00:39.442 | INFO | fp8.lora_loading:convert_lora_weights:498 - Loading LoRA weights for /src/weights-cache/c3399d28a5b321f6
2024-12-14 12:00:39.518 | INFO | fp8.lora_loading:convert_lora_weights:519 - LoRA weights loaded
2024-12-14 12:00:39.518 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys
2024-12-14 12:00:39.519 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted
Applying LoRA: 0%| | 0/304 [00:00<?, ?it/s]
Applying LoRA: 93%|█████████▎| 282/304 [00:00<00:00, 2819.67it/s]
Applying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2714.94it/s]
2024-12-14 12:00:39.631 | SUCCESS | fp8.lora_loading:load_lora:539 - LoRA applied in 0.19s
Using seed: 14367
0it [00:00, ?it/s]
1it [00:00, 8.40it/s]
2it [00:00, 5.87it/s]
3it [00:00, 5.36it/s]
4it [00:00, 5.15it/s]
5it [00:00, 5.02it/s]
6it [00:01, 4.93it/s]
7it [00:01, 4.90it/s]
8it [00:01, 4.88it/s]
9it [00:01, 4.87it/s]
10it [00:01, 4.86it/s]
11it [00:02, 4.85it/s]
12it [00:02, 4.83it/s]
13it [00:02, 4.83it/s]
14it [00:02, 4.83it/s]
15it [00:03, 4.82it/s]
16it [00:03, 4.82it/s]
17it [00:03, 4.81it/s]
18it [00:03, 4.81it/s]
19it [00:03, 4.81it/s]
20it [00:04, 4.81it/s]
21it [00:04, 4.82it/s]
22it [00:04, 4.82it/s]
23it [00:04, 4.82it/s]
24it [00:04, 4.81it/s]
25it [00:05, 4.81it/s]
26it [00:05, 4.81it/s]
27it [00:05, 4.81it/s]
28it [00:05, 4.82it/s]
28it [00:05, 4.89it/s]
Total safe images: 1 out of 1
This model costs approximately $0.016 to run on Replicate, or 62 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.
This model runs on Nvidia H100 GPU hardware. Predictions typically complete within 11 seconds.
This model doesn't have a readme.
This model is warm. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
2024-12-14 12:00:38.739 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys
2024-12-14 12:00:38.740 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted
Applying LoRA: 0%| | 0/304 [00:00<?, ?it/s]
Applying LoRA: 93%|█████████▎| 282/304 [00:00<00:00, 2818.32it/s]
Applying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2713.85it/s]
2024-12-14 12:00:38.852 | SUCCESS | fp8.lora_loading:unload_loras:564 - LoRAs unloaded in 0.11s
free=28625520238592
Downloading weights
2024-12-14T12:00:38Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpbhe_ng3e/weights url=https://replicate.delivery/xezq/xZRxaJALQcpfMalp2QtYfcAoJ4pHl4xDfwTpimS7OXhFlk1nA/trained_model.tar
2024-12-14T12:00:39Z | INFO | [ Complete ] dest=/tmp/tmpbhe_ng3e/weights size="172 MB" total_elapsed=0.562s url=https://replicate.delivery/xezq/xZRxaJALQcpfMalp2QtYfcAoJ4pHl4xDfwTpimS7OXhFlk1nA/trained_model.tar
Downloaded weights in 0.59s
2024-12-14 12:00:39.442 | INFO | fp8.lora_loading:convert_lora_weights:498 - Loading LoRA weights for /src/weights-cache/c3399d28a5b321f6
2024-12-14 12:00:39.518 | INFO | fp8.lora_loading:convert_lora_weights:519 - LoRA weights loaded
2024-12-14 12:00:39.518 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys
2024-12-14 12:00:39.519 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted
Applying LoRA: 0%| | 0/304 [00:00<?, ?it/s]
Applying LoRA: 93%|█████████▎| 282/304 [00:00<00:00, 2819.67it/s]
Applying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2714.94it/s]
2024-12-14 12:00:39.631 | SUCCESS | fp8.lora_loading:load_lora:539 - LoRA applied in 0.19s
Using seed: 14367
0it [00:00, ?it/s]
1it [00:00, 8.40it/s]
2it [00:00, 5.87it/s]
3it [00:00, 5.36it/s]
4it [00:00, 5.15it/s]
5it [00:00, 5.02it/s]
6it [00:01, 4.93it/s]
7it [00:01, 4.90it/s]
8it [00:01, 4.88it/s]
9it [00:01, 4.87it/s]
10it [00:01, 4.86it/s]
11it [00:02, 4.85it/s]
12it [00:02, 4.83it/s]
13it [00:02, 4.83it/s]
14it [00:02, 4.83it/s]
15it [00:03, 4.82it/s]
16it [00:03, 4.82it/s]
17it [00:03, 4.81it/s]
18it [00:03, 4.81it/s]
19it [00:03, 4.81it/s]
20it [00:04, 4.81it/s]
21it [00:04, 4.82it/s]
22it [00:04, 4.82it/s]
23it [00:04, 4.82it/s]
24it [00:04, 4.81it/s]
25it [00:05, 4.81it/s]
26it [00:05, 4.81it/s]
27it [00:05, 4.81it/s]
28it [00:05, 4.82it/s]
28it [00:05, 4.89it/s]
Total safe images: 1 out of 1