Readme
This model doesn't have a readme.
Flux fine-tuned on JWST deep space astrophotography
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run fofr/flux-jwst using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"fofr/flux-jwst:7b2411574454fb1a1b4e3087f48dcb138cd5e0d3d4d901be2cbb903fa71abd19",
{
input: {
model: "dev",
prompt: "A JWST deep space astrophotography image of a colorful, vibrant and beautiful nebula",
go_fast: false,
lora_scale: 0.7,
megapixels: "1",
num_outputs: 1,
aspect_ratio: "1:1",
output_format: "webp",
guidance_scale: 3.5,
output_quality: 80,
prompt_strength: 0.8,
extra_lora_scale: 1,
num_inference_steps: 28
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run fofr/flux-jwst using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"fofr/flux-jwst:7b2411574454fb1a1b4e3087f48dcb138cd5e0d3d4d901be2cbb903fa71abd19",
input={
"model": "dev",
"prompt": "A JWST deep space astrophotography image of a colorful, vibrant and beautiful nebula",
"go_fast": False,
"lora_scale": 0.7,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run fofr/flux-jwst using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "7b2411574454fb1a1b4e3087f48dcb138cd5e0d3d4d901be2cbb903fa71abd19",
"input": {
"model": "dev",
"prompt": "A JWST deep space astrophotography image of a colorful, vibrant and beautiful nebula",
"go_fast": false,
"lora_scale": 0.7,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/fofr/flux-jwst@sha256:7b2411574454fb1a1b4e3087f48dcb138cd5e0d3d4d901be2cbb903fa71abd19 \
-i 'model="dev"' \
-i 'prompt="A JWST deep space astrophotography image of a colorful, vibrant and beautiful nebula"' \
-i 'go_fast=false' \
-i 'lora_scale=0.7' \
-i 'megapixels="1"' \
-i 'num_outputs=1' \
-i 'aspect_ratio="1:1"' \
-i 'output_format="webp"' \
-i 'guidance_scale=3.5' \
-i 'output_quality=80' \
-i 'prompt_strength=0.8' \
-i 'extra_lora_scale=1' \
-i 'num_inference_steps=28'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/fofr/flux-jwst@sha256:7b2411574454fb1a1b4e3087f48dcb138cd5e0d3d4d901be2cbb903fa71abd19
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "model": "dev", "prompt": "A JWST deep space astrophotography image of a colorful, vibrant and beautiful nebula", "go_fast": false, "lora_scale": 0.7, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
Each run costs approximately $0.083. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2024-08-15T23:18:31.802148Z",
"created_at": "2024-08-15T23:18:10.170000Z",
"data_removed": false,
"error": null,
"id": "aqmbsmwqz9rm00chb1ataezaj8",
"input": {
"model": "dev",
"prompt": "A JWST deep space astrophotography image of a colorful, vibrant and beautiful nebula",
"lora_scale": 0.7,
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 80,
"num_inference_steps": 28
},
"logs": "Using seed: 56109\nPrompt: A JWST deep space astrophotography image of a colorful, vibrant and beautiful nebula\ntxt2img mode\nUsing dev model\nLoading LoRA weights\nEnsuring enough disk space...\nFree disk space: 9738521563136\nDownloading weights: https://replicate.delivery/yhqm/Kf4fVCRfyvGD4ooxR3XMPIxY15JC4xjAFlGfRGg5qOD1BPMNB/trained_model.tar\n2024-08-15T23:18:10Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/4e9e71763aec931a url=https://replicate.delivery/yhqm/Kf4fVCRfyvGD4ooxR3XMPIxY15JC4xjAFlGfRGg5qOD1BPMNB/trained_model.tar\n2024-08-15T23:18:14Z | INFO | [ Complete ] dest=/src/weights-cache/4e9e71763aec931a size=\"172 MB\" total_elapsed=3.669s url=https://replicate.delivery/yhqm/Kf4fVCRfyvGD4ooxR3XMPIxY15JC4xjAFlGfRGg5qOD1BPMNB/trained_model.tar\nb''\nDownloaded weights in 3.6994292736053467 seconds\nLoRA weights loaded successfully\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.53it/s]\n 7%|▋ | 2/28 [00:00<00:06, 3.95it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.76it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.67it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.62it/s]\n 21%|██▏ | 6/28 [00:01<00:06, 3.59it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.58it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.57it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.56it/s]\n 36%|███▌ | 10/28 [00:02<00:05, 3.55it/s]\n 39%|███▉ | 11/28 [00:03<00:04, 3.55it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.55it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.55it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.54it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.54it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.55it/s]\n 61%|██████ | 17/28 [00:04<00:03, 3.54it/s]\n 64%|██████▍ | 18/28 [00:05<00:02, 3.53it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.54it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.54it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.54it/s]\n 79%|███████▊ | 22/28 [00:06<00:01, 3.54it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.53it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.55it/s]\n 89%|████████▉ | 25/28 [00:07<00:00, 3.55it/s]\n 93%|█████████▎| 26/28 [00:07<00:00, 3.54it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.55it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.55it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.57it/s]",
"metrics": {
"predict_time": 20.846463395,
"total_time": 21.632148
},
"output": [
"https://replicate.delivery/yhqm/14rgSzqtkV7WFJOBSNJwKVr5hyErjNpVleRezRCp4X7H7DTTA/out-0.webp"
],
"started_at": "2024-08-15T23:18:10.955684Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/aqmbsmwqz9rm00chb1ataezaj8",
"cancel": "https://api.replicate.com/v1/predictions/aqmbsmwqz9rm00chb1ataezaj8/cancel"
},
"version": "7b2411574454fb1a1b4e3087f48dcb138cd5e0d3d4d901be2cbb903fa71abd19"
}
Using seed: 56109
Prompt: A JWST deep space astrophotography image of a colorful, vibrant and beautiful nebula
txt2img mode
Using dev model
Loading LoRA weights
Ensuring enough disk space...
Free disk space: 9738521563136
Downloading weights: https://replicate.delivery/yhqm/Kf4fVCRfyvGD4ooxR3XMPIxY15JC4xjAFlGfRGg5qOD1BPMNB/trained_model.tar
2024-08-15T23:18:10Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/4e9e71763aec931a url=https://replicate.delivery/yhqm/Kf4fVCRfyvGD4ooxR3XMPIxY15JC4xjAFlGfRGg5qOD1BPMNB/trained_model.tar
2024-08-15T23:18:14Z | INFO | [ Complete ] dest=/src/weights-cache/4e9e71763aec931a size="172 MB" total_elapsed=3.669s url=https://replicate.delivery/yhqm/Kf4fVCRfyvGD4ooxR3XMPIxY15JC4xjAFlGfRGg5qOD1BPMNB/trained_model.tar
b''
Downloaded weights in 3.6994292736053467 seconds
LoRA weights loaded successfully
0%| | 0/28 [00:00<?, ?it/s]
4%|▎ | 1/28 [00:00<00:07, 3.53it/s]
7%|▋ | 2/28 [00:00<00:06, 3.95it/s]
11%|█ | 3/28 [00:00<00:06, 3.76it/s]
14%|█▍ | 4/28 [00:01<00:06, 3.67it/s]
18%|█▊ | 5/28 [00:01<00:06, 3.62it/s]
21%|██▏ | 6/28 [00:01<00:06, 3.59it/s]
25%|██▌ | 7/28 [00:01<00:05, 3.58it/s]
29%|██▊ | 8/28 [00:02<00:05, 3.57it/s]
32%|███▏ | 9/28 [00:02<00:05, 3.56it/s]
36%|███▌ | 10/28 [00:02<00:05, 3.55it/s]
39%|███▉ | 11/28 [00:03<00:04, 3.55it/s]
43%|████▎ | 12/28 [00:03<00:04, 3.55it/s]
46%|████▋ | 13/28 [00:03<00:04, 3.55it/s]
50%|█████ | 14/28 [00:03<00:03, 3.54it/s]
54%|█████▎ | 15/28 [00:04<00:03, 3.54it/s]
57%|█████▋ | 16/28 [00:04<00:03, 3.55it/s]
61%|██████ | 17/28 [00:04<00:03, 3.54it/s]
64%|██████▍ | 18/28 [00:05<00:02, 3.53it/s]
68%|██████▊ | 19/28 [00:05<00:02, 3.54it/s]
71%|███████▏ | 20/28 [00:05<00:02, 3.54it/s]
75%|███████▌ | 21/28 [00:05<00:01, 3.54it/s]
79%|███████▊ | 22/28 [00:06<00:01, 3.54it/s]
82%|████████▏ | 23/28 [00:06<00:01, 3.53it/s]
86%|████████▌ | 24/28 [00:06<00:01, 3.55it/s]
89%|████████▉ | 25/28 [00:07<00:00, 3.55it/s]
93%|█████████▎| 26/28 [00:07<00:00, 3.54it/s]
96%|█████████▋| 27/28 [00:07<00:00, 3.55it/s]
100%|██████████| 28/28 [00:07<00:00, 3.55it/s]
100%|██████████| 28/28 [00:07<00:00, 3.57it/s]
This model costs approximately $0.083 to run on Replicate, or 12 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.
This model runs on Nvidia H100 GPU hardware. Predictions typically complete within 55 seconds. The predict time for this model varies significantly based on the inputs.
This model doesn't have a readme.
This model is warm. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
Using seed: 56109
Prompt: A JWST deep space astrophotography image of a colorful, vibrant and beautiful nebula
txt2img mode
Using dev model
Loading LoRA weights
Ensuring enough disk space...
Free disk space: 9738521563136
Downloading weights: https://replicate.delivery/yhqm/Kf4fVCRfyvGD4ooxR3XMPIxY15JC4xjAFlGfRGg5qOD1BPMNB/trained_model.tar
2024-08-15T23:18:10Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/4e9e71763aec931a url=https://replicate.delivery/yhqm/Kf4fVCRfyvGD4ooxR3XMPIxY15JC4xjAFlGfRGg5qOD1BPMNB/trained_model.tar
2024-08-15T23:18:14Z | INFO | [ Complete ] dest=/src/weights-cache/4e9e71763aec931a size="172 MB" total_elapsed=3.669s url=https://replicate.delivery/yhqm/Kf4fVCRfyvGD4ooxR3XMPIxY15JC4xjAFlGfRGg5qOD1BPMNB/trained_model.tar
b''
Downloaded weights in 3.6994292736053467 seconds
LoRA weights loaded successfully
0%| | 0/28 [00:00<?, ?it/s]
4%|▎ | 1/28 [00:00<00:07, 3.53it/s]
7%|▋ | 2/28 [00:00<00:06, 3.95it/s]
11%|█ | 3/28 [00:00<00:06, 3.76it/s]
14%|█▍ | 4/28 [00:01<00:06, 3.67it/s]
18%|█▊ | 5/28 [00:01<00:06, 3.62it/s]
21%|██▏ | 6/28 [00:01<00:06, 3.59it/s]
25%|██▌ | 7/28 [00:01<00:05, 3.58it/s]
29%|██▊ | 8/28 [00:02<00:05, 3.57it/s]
32%|███▏ | 9/28 [00:02<00:05, 3.56it/s]
36%|███▌ | 10/28 [00:02<00:05, 3.55it/s]
39%|███▉ | 11/28 [00:03<00:04, 3.55it/s]
43%|████▎ | 12/28 [00:03<00:04, 3.55it/s]
46%|████▋ | 13/28 [00:03<00:04, 3.55it/s]
50%|█████ | 14/28 [00:03<00:03, 3.54it/s]
54%|█████▎ | 15/28 [00:04<00:03, 3.54it/s]
57%|█████▋ | 16/28 [00:04<00:03, 3.55it/s]
61%|██████ | 17/28 [00:04<00:03, 3.54it/s]
64%|██████▍ | 18/28 [00:05<00:02, 3.53it/s]
68%|██████▊ | 19/28 [00:05<00:02, 3.54it/s]
71%|███████▏ | 20/28 [00:05<00:02, 3.54it/s]
75%|███████▌ | 21/28 [00:05<00:01, 3.54it/s]
79%|███████▊ | 22/28 [00:06<00:01, 3.54it/s]
82%|████████▏ | 23/28 [00:06<00:01, 3.53it/s]
86%|████████▌ | 24/28 [00:06<00:01, 3.55it/s]
89%|████████▉ | 25/28 [00:07<00:00, 3.55it/s]
93%|█████████▎| 26/28 [00:07<00:00, 3.54it/s]
96%|█████████▋| 27/28 [00:07<00:00, 3.55it/s]
100%|██████████| 28/28 [00:07<00:00, 3.55it/s]
100%|██████████| 28/28 [00:07<00:00, 3.57it/s]