fofr
/
flux-neo-1x
Flux lora, fine tuned on NEO-1X robot, use "NEO1X" to trigger image generation
- Public
- 1.7K runs
-
H100
Prediction
fofr/flux-neo-1x:77099de387ce04bb69f5449f1a85e3937f355c7fe106e4864445e8040070aedfIDntjqa1waphrm40chp9yt2qeeg8StatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- a photo of NEO1X humanoid robot in the sea
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 3:2
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 80
- extra_lora_scale
- 0.8
- num_inference_steps
- 28
{ "model": "dev", "prompt": "a photo of NEO1X humanoid robot in the sea", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "3:2", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run fofr/flux-neo-1x using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "fofr/flux-neo-1x:77099de387ce04bb69f5449f1a85e3937f355c7fe106e4864445e8040070aedf", { input: { model: "dev", prompt: "a photo of NEO1X humanoid robot in the sea", lora_scale: 1, num_outputs: 1, aspect_ratio: "3:2", output_format: "webp", guidance_scale: 3.5, output_quality: 80, extra_lora_scale: 0.8, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run fofr/flux-neo-1x using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "fofr/flux-neo-1x:77099de387ce04bb69f5449f1a85e3937f355c7fe106e4864445e8040070aedf", input={ "model": "dev", "prompt": "a photo of NEO1X humanoid robot in the sea", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "3:2", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run fofr/flux-neo-1x using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "77099de387ce04bb69f5449f1a85e3937f355c7fe106e4864445e8040070aedf", "input": { "model": "dev", "prompt": "a photo of NEO1X humanoid robot in the sea", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "3:2", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-02T11:27:54.224030Z", "created_at": "2024-09-02T11:27:37.652000Z", "data_removed": false, "error": null, "id": "ntjqa1waphrm40chp9yt2qeeg8", "input": { "model": "dev", "prompt": "a photo of NEO1X humanoid robot in the sea", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "3:2", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 }, "logs": "Using seed: 39496\nPrompt: a photo of NEO1X humanoid robot in the sea\ntxt2img mode\nUsing dev model\nLoaded LoRAs in 8.60s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.76it/s]\n 7%|▋ | 2/28 [00:00<00:06, 4.32it/s]\n 11%|█ | 3/28 [00:00<00:06, 4.02it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.90it/s]\n 18%|█▊ | 5/28 [00:01<00:05, 3.84it/s]\n 21%|██▏ | 6/28 [00:01<00:05, 3.81it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.78it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.75it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.75it/s]\n 36%|███▌ | 10/28 [00:02<00:04, 3.75it/s]\n 39%|███▉ | 11/28 [00:02<00:04, 3.74it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.72it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.73it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.74it/s]\n 54%|█████▎ | 15/28 [00:03<00:03, 3.73it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.73it/s]\n 61%|██████ | 17/28 [00:04<00:02, 3.73it/s]\n 64%|██████▍ | 18/28 [00:04<00:02, 3.74it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.73it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.73it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.73it/s]\n 79%|███████▊ | 22/28 [00:05<00:01, 3.73it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.73it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.72it/s]\n 89%|████████▉ | 25/28 [00:06<00:00, 3.73it/s]\n 93%|█████████▎| 26/28 [00:06<00:00, 3.73it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.73it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.72it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.76it/s]", "metrics": { "predict_time": 16.562161508, "total_time": 16.57203 }, "output": [ "https://replicate.delivery/yhqm/RDFi5FXrGVYHLt2wDFuIqJeteSOnV5rckLe5mAiLfizqzUjNB/out-0.webp" ], "started_at": "2024-09-02T11:27:37.661869Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/ntjqa1waphrm40chp9yt2qeeg8", "cancel": "https://api.replicate.com/v1/predictions/ntjqa1waphrm40chp9yt2qeeg8/cancel" }, "version": "77099de387ce04bb69f5449f1a85e3937f355c7fe106e4864445e8040070aedf" }
Generated inUsing seed: 39496 Prompt: a photo of NEO1X humanoid robot in the sea txt2img mode Using dev model Loaded LoRAs in 8.60s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.76it/s] 7%|▋ | 2/28 [00:00<00:06, 4.32it/s] 11%|█ | 3/28 [00:00<00:06, 4.02it/s] 14%|█▍ | 4/28 [00:01<00:06, 3.90it/s] 18%|█▊ | 5/28 [00:01<00:05, 3.84it/s] 21%|██▏ | 6/28 [00:01<00:05, 3.81it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.78it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.75it/s] 32%|███▏ | 9/28 [00:02<00:05, 3.75it/s] 36%|███▌ | 10/28 [00:02<00:04, 3.75it/s] 39%|███▉ | 11/28 [00:02<00:04, 3.74it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.72it/s] 46%|████▋ | 13/28 [00:03<00:04, 3.73it/s] 50%|█████ | 14/28 [00:03<00:03, 3.74it/s] 54%|█████▎ | 15/28 [00:03<00:03, 3.73it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.73it/s] 61%|██████ | 17/28 [00:04<00:02, 3.73it/s] 64%|██████▍ | 18/28 [00:04<00:02, 3.74it/s] 68%|██████▊ | 19/28 [00:05<00:02, 3.73it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.73it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.73it/s] 79%|███████▊ | 22/28 [00:05<00:01, 3.73it/s] 82%|████████▏ | 23/28 [00:06<00:01, 3.73it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.72it/s] 89%|████████▉ | 25/28 [00:06<00:00, 3.73it/s] 93%|█████████▎| 26/28 [00:06<00:00, 3.73it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.73it/s] 100%|██████████| 28/28 [00:07<00:00, 3.72it/s] 100%|██████████| 28/28 [00:07<00:00, 3.76it/s]
Prediction
fofr/flux-neo-1x:77099de387ce04bb69f5449f1a85e3937f355c7fe106e4864445e8040070aedfIDj9hv7xs0fnrm60chmypb5b7x8cStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- a photo of NEO1X robot
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 80
- extra_lora_scale
- 0.8
- num_inference_steps
- 28
{ "model": "dev", "prompt": "a photo of NEO1X robot", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run fofr/flux-neo-1x using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "fofr/flux-neo-1x:77099de387ce04bb69f5449f1a85e3937f355c7fe106e4864445e8040070aedf", { input: { model: "dev", prompt: "a photo of NEO1X robot", lora_scale: 1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 80, extra_lora_scale: 0.8, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run fofr/flux-neo-1x using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "fofr/flux-neo-1x:77099de387ce04bb69f5449f1a85e3937f355c7fe106e4864445e8040070aedf", input={ "model": "dev", "prompt": "a photo of NEO1X robot", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run fofr/flux-neo-1x using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "77099de387ce04bb69f5449f1a85e3937f355c7fe106e4864445e8040070aedf", "input": { "model": "dev", "prompt": "a photo of NEO1X robot", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-08-31T09:03:02.737482Z", "created_at": "2024-08-31T09:02:41.277000Z", "data_removed": false, "error": null, "id": "j9hv7xs0fnrm60chmypb5b7x8c", "input": { "model": "dev", "prompt": "a photo of NEO1X robot", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 }, "logs": "Using seed: 53262\nPrompt: a photo of NEO1X robot\ntxt2img mode\nUsing dev model\nfree=9135207510016\nDownloading weights\n2024-08-31T09:02:41Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmp0knvr934/weights url=https://replicate.delivery/yhqm/orbssPKkX4qEIVxz4mGfyThd4MRyawYKw5k2loxurM0FaEsJA/trained_model.tar\n2024-08-31T09:02:42Z | INFO | [ Complete ] dest=/tmp/tmp0knvr934/weights size=\"172 MB\" total_elapsed=1.506s url=https://replicate.delivery/yhqm/orbssPKkX4qEIVxz4mGfyThd4MRyawYKw5k2loxurM0FaEsJA/trained_model.tar\nDownloaded weights in 1.54s\nLoaded LoRAs in 13.33s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.66it/s]\n 7%|▋ | 2/28 [00:00<00:06, 4.21it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.94it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.82it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.75it/s]\n 21%|██▏ | 6/28 [00:01<00:05, 3.72it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.70it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.68it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.67it/s]\n 36%|███▌ | 10/28 [00:02<00:04, 3.66it/s]\n 39%|███▉ | 11/28 [00:02<00:04, 3.66it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.66it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.66it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.65it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.66it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.66it/s]\n 61%|██████ | 17/28 [00:04<00:03, 3.66it/s]\n 64%|██████▍ | 18/28 [00:04<00:02, 3.65it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.65it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.66it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.65it/s]\n 79%|███████▊ | 22/28 [00:05<00:01, 3.65it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.65it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.65it/s]\n 89%|████████▉ | 25/28 [00:06<00:00, 3.65it/s]\n 93%|█████████▎| 26/28 [00:07<00:00, 3.65it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.65it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.65it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.68it/s]", "metrics": { "predict_time": 21.45233355, "total_time": 21.460482 }, "output": [ "https://replicate.delivery/yhqm/jo7zvjgyETJCB5FutzDfAkGNeLE6XsyV0x9D6apf9xPMyRwmA/out-0.webp" ], "started_at": "2024-08-31T09:02:41.285149Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/j9hv7xs0fnrm60chmypb5b7x8c", "cancel": "https://api.replicate.com/v1/predictions/j9hv7xs0fnrm60chmypb5b7x8c/cancel" }, "version": "77099de387ce04bb69f5449f1a85e3937f355c7fe106e4864445e8040070aedf" }
Generated inUsing seed: 53262 Prompt: a photo of NEO1X robot txt2img mode Using dev model free=9135207510016 Downloading weights 2024-08-31T09:02:41Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmp0knvr934/weights url=https://replicate.delivery/yhqm/orbssPKkX4qEIVxz4mGfyThd4MRyawYKw5k2loxurM0FaEsJA/trained_model.tar 2024-08-31T09:02:42Z | INFO | [ Complete ] dest=/tmp/tmp0knvr934/weights size="172 MB" total_elapsed=1.506s url=https://replicate.delivery/yhqm/orbssPKkX4qEIVxz4mGfyThd4MRyawYKw5k2loxurM0FaEsJA/trained_model.tar Downloaded weights in 1.54s Loaded LoRAs in 13.33s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.66it/s] 7%|▋ | 2/28 [00:00<00:06, 4.21it/s] 11%|█ | 3/28 [00:00<00:06, 3.94it/s] 14%|█▍ | 4/28 [00:01<00:06, 3.82it/s] 18%|█▊ | 5/28 [00:01<00:06, 3.75it/s] 21%|██▏ | 6/28 [00:01<00:05, 3.72it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.70it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.68it/s] 32%|███▏ | 9/28 [00:02<00:05, 3.67it/s] 36%|███▌ | 10/28 [00:02<00:04, 3.66it/s] 39%|███▉ | 11/28 [00:02<00:04, 3.66it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.66it/s] 46%|████▋ | 13/28 [00:03<00:04, 3.66it/s] 50%|█████ | 14/28 [00:03<00:03, 3.65it/s] 54%|█████▎ | 15/28 [00:04<00:03, 3.66it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.66it/s] 61%|██████ | 17/28 [00:04<00:03, 3.66it/s] 64%|██████▍ | 18/28 [00:04<00:02, 3.65it/s] 68%|██████▊ | 19/28 [00:05<00:02, 3.65it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.66it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.65it/s] 79%|███████▊ | 22/28 [00:05<00:01, 3.65it/s] 82%|████████▏ | 23/28 [00:06<00:01, 3.65it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.65it/s] 89%|████████▉ | 25/28 [00:06<00:00, 3.65it/s] 93%|█████████▎| 26/28 [00:07<00:00, 3.65it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.65it/s] 100%|██████████| 28/28 [00:07<00:00, 3.65it/s] 100%|██████████| 28/28 [00:07<00:00, 3.68it/s]
Prediction
fofr/flux-neo-1x:77099de387ce04bb69f5449f1a85e3937f355c7fe106e4864445e8040070aedfIDn9qy4nv3s1rm40chmyqaycqkz0StatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- a photo of NEO1X robot jumping in a kitchen, its feet are in the air
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 2.5
- output_quality
- 95
- extra_lora_scale
- 0.8
- num_inference_steps
- 28
{ "model": "dev", "prompt": "a photo of NEO1X robot jumping in a kitchen, its feet are in the air", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 2.5, "output_quality": 95, "extra_lora_scale": 0.8, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run fofr/flux-neo-1x using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "fofr/flux-neo-1x:77099de387ce04bb69f5449f1a85e3937f355c7fe106e4864445e8040070aedf", { input: { model: "dev", prompt: "a photo of NEO1X robot jumping in a kitchen, its feet are in the air", lora_scale: 1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 2.5, output_quality: 95, extra_lora_scale: 0.8, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run fofr/flux-neo-1x using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "fofr/flux-neo-1x:77099de387ce04bb69f5449f1a85e3937f355c7fe106e4864445e8040070aedf", input={ "model": "dev", "prompt": "a photo of NEO1X robot jumping in a kitchen, its feet are in the air", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 2.5, "output_quality": 95, "extra_lora_scale": 0.8, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run fofr/flux-neo-1x using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "77099de387ce04bb69f5449f1a85e3937f355c7fe106e4864445e8040070aedf", "input": { "model": "dev", "prompt": "a photo of NEO1X robot jumping in a kitchen, its feet are in the air", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 2.5, "output_quality": 95, "extra_lora_scale": 0.8, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-08-31T09:05:29.135489Z", "created_at": "2024-08-31T09:05:09.576000Z", "data_removed": false, "error": null, "id": "n9qy4nv3s1rm40chmyqaycqkz0", "input": { "model": "dev", "prompt": "a photo of NEO1X robot jumping in a kitchen, its feet are in the air", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 2.5, "output_quality": 95, "extra_lora_scale": 0.8, "num_inference_steps": 28 }, "logs": "Using seed: 51689\nPrompt: a photo of NEO1X robot jumping in a kitchen, its feet are in the air\ntxt2img mode\nUsing dev model\nfree=9504395862016\nDownloading weights\n2024-08-31T09:05:09Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmp0_gqkmyf/weights url=https://replicate.delivery/yhqm/orbssPKkX4qEIVxz4mGfyThd4MRyawYKw5k2loxurM0FaEsJA/trained_model.tar\n2024-08-31T09:05:11Z | INFO | [ Complete ] dest=/tmp/tmp0_gqkmyf/weights size=\"172 MB\" total_elapsed=1.499s url=https://replicate.delivery/yhqm/orbssPKkX4qEIVxz4mGfyThd4MRyawYKw5k2loxurM0FaEsJA/trained_model.tar\nDownloaded weights in 1.54s\nLoaded LoRAs in 11.45s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.69it/s]\n 7%|▋ | 2/28 [00:00<00:06, 4.25it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.98it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.86it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.80it/s]\n 21%|██▏ | 6/28 [00:01<00:05, 3.76it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.74it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.73it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.72it/s]\n 36%|███▌ | 10/28 [00:02<00:04, 3.71it/s]\n 39%|███▉ | 11/28 [00:02<00:04, 3.71it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.70it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.70it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.70it/s]\n 54%|█████▎ | 15/28 [00:03<00:03, 3.70it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.69it/s]\n 61%|██████ | 17/28 [00:04<00:02, 3.69it/s]\n 64%|██████▍ | 18/28 [00:04<00:02, 3.69it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.70it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.69it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.69it/s]\n 79%|███████▊ | 22/28 [00:05<00:01, 3.69it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.69it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.69it/s]\n 89%|████████▉ | 25/28 [00:06<00:00, 3.69it/s]\n 93%|█████████▎| 26/28 [00:06<00:00, 3.69it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.69it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.69it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.72it/s]", "metrics": { "predict_time": 19.551531875, "total_time": 19.559489 }, "output": [ "https://replicate.delivery/yhqm/u62Z8zVyxNK3BZkH6LbiTdJFnznwN3LeqWAQzfhntOfw2RwmA/out-0.webp" ], "started_at": "2024-08-31T09:05:09.583957Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/n9qy4nv3s1rm40chmyqaycqkz0", "cancel": "https://api.replicate.com/v1/predictions/n9qy4nv3s1rm40chmyqaycqkz0/cancel" }, "version": "77099de387ce04bb69f5449f1a85e3937f355c7fe106e4864445e8040070aedf" }
Generated inUsing seed: 51689 Prompt: a photo of NEO1X robot jumping in a kitchen, its feet are in the air txt2img mode Using dev model free=9504395862016 Downloading weights 2024-08-31T09:05:09Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmp0_gqkmyf/weights url=https://replicate.delivery/yhqm/orbssPKkX4qEIVxz4mGfyThd4MRyawYKw5k2loxurM0FaEsJA/trained_model.tar 2024-08-31T09:05:11Z | INFO | [ Complete ] dest=/tmp/tmp0_gqkmyf/weights size="172 MB" total_elapsed=1.499s url=https://replicate.delivery/yhqm/orbssPKkX4qEIVxz4mGfyThd4MRyawYKw5k2loxurM0FaEsJA/trained_model.tar Downloaded weights in 1.54s Loaded LoRAs in 11.45s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.69it/s] 7%|▋ | 2/28 [00:00<00:06, 4.25it/s] 11%|█ | 3/28 [00:00<00:06, 3.98it/s] 14%|█▍ | 4/28 [00:01<00:06, 3.86it/s] 18%|█▊ | 5/28 [00:01<00:06, 3.80it/s] 21%|██▏ | 6/28 [00:01<00:05, 3.76it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.74it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.73it/s] 32%|███▏ | 9/28 [00:02<00:05, 3.72it/s] 36%|███▌ | 10/28 [00:02<00:04, 3.71it/s] 39%|███▉ | 11/28 [00:02<00:04, 3.71it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.70it/s] 46%|████▋ | 13/28 [00:03<00:04, 3.70it/s] 50%|█████ | 14/28 [00:03<00:03, 3.70it/s] 54%|█████▎ | 15/28 [00:03<00:03, 3.70it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.69it/s] 61%|██████ | 17/28 [00:04<00:02, 3.69it/s] 64%|██████▍ | 18/28 [00:04<00:02, 3.69it/s] 68%|██████▊ | 19/28 [00:05<00:02, 3.70it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.69it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.69it/s] 79%|███████▊ | 22/28 [00:05<00:01, 3.69it/s] 82%|████████▏ | 23/28 [00:06<00:01, 3.69it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.69it/s] 89%|████████▉ | 25/28 [00:06<00:00, 3.69it/s] 93%|█████████▎| 26/28 [00:06<00:00, 3.69it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.69it/s] 100%|██████████| 28/28 [00:07<00:00, 3.69it/s] 100%|██████████| 28/28 [00:07<00:00, 3.72it/s]
Want to make some of these yourself?
Run this model