Readme
This model doesn't have a readme.
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
import fs from "node:fs";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run fofr/flux-nobel-prize-2024-sketch using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"fofr/flux-nobel-prize-2024-sketch:59bb08ad52de964441a75b8c6e36955cde3d00e4789dc131b2cb5c357239e310",
{
input: {
model: "dev",
prompt: "A NOBEL24 gold and black pen sketch illustration of a cat on textured paper",
go_fast: false,
lora_scale: 1,
megapixels: "1",
num_outputs: 1,
aspect_ratio: "1:1",
output_format: "webp",
guidance_scale: 3.5,
output_quality: 90,
prompt_strength: 0.8,
extra_lora_scale: 1,
num_inference_steps: 28
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run fofr/flux-nobel-prize-2024-sketch using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"fofr/flux-nobel-prize-2024-sketch:59bb08ad52de964441a75b8c6e36955cde3d00e4789dc131b2cb5c357239e310",
input={
"model": "dev",
"prompt": "A NOBEL24 gold and black pen sketch illustration of a cat on textured paper",
"go_fast": False,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 90,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run fofr/flux-nobel-prize-2024-sketch using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "fofr/flux-nobel-prize-2024-sketch:59bb08ad52de964441a75b8c6e36955cde3d00e4789dc131b2cb5c357239e310",
"input": {
"model": "dev",
"prompt": "A NOBEL24 gold and black pen sketch illustration of a cat on textured paper",
"go_fast": false,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 90,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
Each run costs approximately $0.021. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2024-10-09T12:10:08.093121Z",
"created_at": "2024-10-09T12:09:55.707000Z",
"data_removed": false,
"error": null,
"id": "traa104gzdrm60cje4qtxztsxw",
"input": {
"model": "dev",
"prompt": "A NOBEL24 gold and black pen sketch illustration of a cat on textured paper",
"lora_scale": 1,
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 90,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
},
"logs": "Using seed: 12948\nPrompt: A NOBEL24 gold and black pen sketch illustration of a cat on textured paper\n[!] txt2img mode\nUsing dev model\nfree=8727123849216\nDownloading weights\n2024-10-09T12:09:55Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpjodarlt8/weights url=https://replicate.delivery/yhqm/ipGLsptzlT5ZB1QOyfHpaf9L63RHw22JNfZRTjniBtcYeHUOB/trained_model.tar\n2024-10-09T12:09:57Z | INFO | [ Complete ] dest=/tmp/tmpjodarlt8/weights size=\"172 MB\" total_elapsed=1.545s url=https://replicate.delivery/yhqm/ipGLsptzlT5ZB1QOyfHpaf9L63RHw22JNfZRTjniBtcYeHUOB/trained_model.tar\nDownloaded weights in 1.57s\nLoaded LoRAs in 2.35s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:09, 2.88it/s]\n 7%|▋ | 2/28 [00:00<00:08, 3.21it/s]\n 11%|█ | 3/28 [00:00<00:08, 3.06it/s]\n 14%|█▍ | 4/28 [00:01<00:08, 2.99it/s]\n 18%|█▊ | 5/28 [00:01<00:07, 2.95it/s]\n 21%|██▏ | 6/28 [00:02<00:07, 2.93it/s]\n 25%|██▌ | 7/28 [00:02<00:07, 2.91it/s]\n 29%|██▊ | 8/28 [00:02<00:06, 2.90it/s]\n 32%|███▏ | 9/28 [00:03<00:06, 2.90it/s]\n 36%|███▌ | 10/28 [00:03<00:06, 2.89it/s]\n 39%|███▉ | 11/28 [00:03<00:05, 2.89it/s]\n 43%|████▎ | 12/28 [00:04<00:05, 2.89it/s]\n 46%|████▋ | 13/28 [00:04<00:05, 2.89it/s]\n 50%|█████ | 14/28 [00:04<00:04, 2.89it/s]\n 54%|█████▎ | 15/28 [00:05<00:04, 2.89it/s]\n 57%|█████▋ | 16/28 [00:05<00:04, 2.89it/s]\n 61%|██████ | 17/28 [00:05<00:03, 2.89it/s]\n 64%|██████▍ | 18/28 [00:06<00:03, 2.88it/s]\n 68%|██████▊ | 19/28 [00:06<00:03, 2.88it/s]\n 71%|███████▏ | 20/28 [00:06<00:02, 2.88it/s]\n 75%|███████▌ | 21/28 [00:07<00:02, 2.88it/s]\n 79%|███████▊ | 22/28 [00:07<00:02, 2.88it/s]\n 82%|████████▏ | 23/28 [00:07<00:01, 2.88it/s]\n 86%|████████▌ | 24/28 [00:08<00:01, 2.88it/s]\n 89%|████████▉ | 25/28 [00:08<00:01, 2.88it/s]\n 93%|█████████▎| 26/28 [00:08<00:00, 2.88it/s]\n 96%|█████████▋| 27/28 [00:09<00:00, 2.88it/s]\n100%|██████████| 28/28 [00:09<00:00, 2.88it/s]\n100%|██████████| 28/28 [00:09<00:00, 2.90it/s]",
"metrics": {
"predict_time": 12.375425965,
"total_time": 12.386121
},
"output": [
"https://replicate.delivery/yhqm/oKziA7quc5KMHVpr1z2hKc4LuNzf9fe80h8b3OdUFQfCKJUOB/out-0.webp"
],
"started_at": "2024-10-09T12:09:55.717695Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/traa104gzdrm60cje4qtxztsxw",
"cancel": "https://api.replicate.com/v1/predictions/traa104gzdrm60cje4qtxztsxw/cancel"
},
"version": "59bb08ad52de964441a75b8c6e36955cde3d00e4789dc131b2cb5c357239e310"
}
Using seed: 12948
Prompt: A NOBEL24 gold and black pen sketch illustration of a cat on textured paper
[!] txt2img mode
Using dev model
free=8727123849216
Downloading weights
2024-10-09T12:09:55Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpjodarlt8/weights url=https://replicate.delivery/yhqm/ipGLsptzlT5ZB1QOyfHpaf9L63RHw22JNfZRTjniBtcYeHUOB/trained_model.tar
2024-10-09T12:09:57Z | INFO | [ Complete ] dest=/tmp/tmpjodarlt8/weights size="172 MB" total_elapsed=1.545s url=https://replicate.delivery/yhqm/ipGLsptzlT5ZB1QOyfHpaf9L63RHw22JNfZRTjniBtcYeHUOB/trained_model.tar
Downloaded weights in 1.57s
Loaded LoRAs in 2.35s
0%| | 0/28 [00:00<?, ?it/s]
4%|▎ | 1/28 [00:00<00:09, 2.88it/s]
7%|▋ | 2/28 [00:00<00:08, 3.21it/s]
11%|█ | 3/28 [00:00<00:08, 3.06it/s]
14%|█▍ | 4/28 [00:01<00:08, 2.99it/s]
18%|█▊ | 5/28 [00:01<00:07, 2.95it/s]
21%|██▏ | 6/28 [00:02<00:07, 2.93it/s]
25%|██▌ | 7/28 [00:02<00:07, 2.91it/s]
29%|██▊ | 8/28 [00:02<00:06, 2.90it/s]
32%|███▏ | 9/28 [00:03<00:06, 2.90it/s]
36%|███▌ | 10/28 [00:03<00:06, 2.89it/s]
39%|███▉ | 11/28 [00:03<00:05, 2.89it/s]
43%|████▎ | 12/28 [00:04<00:05, 2.89it/s]
46%|████▋ | 13/28 [00:04<00:05, 2.89it/s]
50%|█████ | 14/28 [00:04<00:04, 2.89it/s]
54%|█████▎ | 15/28 [00:05<00:04, 2.89it/s]
57%|█████▋ | 16/28 [00:05<00:04, 2.89it/s]
61%|██████ | 17/28 [00:05<00:03, 2.89it/s]
64%|██████▍ | 18/28 [00:06<00:03, 2.88it/s]
68%|██████▊ | 19/28 [00:06<00:03, 2.88it/s]
71%|███████▏ | 20/28 [00:06<00:02, 2.88it/s]
75%|███████▌ | 21/28 [00:07<00:02, 2.88it/s]
79%|███████▊ | 22/28 [00:07<00:02, 2.88it/s]
82%|████████▏ | 23/28 [00:07<00:01, 2.88it/s]
86%|████████▌ | 24/28 [00:08<00:01, 2.88it/s]
89%|████████▉ | 25/28 [00:08<00:01, 2.88it/s]
93%|█████████▎| 26/28 [00:08<00:00, 2.88it/s]
96%|█████████▋| 27/28 [00:09<00:00, 2.88it/s]
100%|██████████| 28/28 [00:09<00:00, 2.88it/s]
100%|██████████| 28/28 [00:09<00:00, 2.90it/s]
This model costs approximately $0.021 to run on Replicate, or 47 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.
This model runs on Nvidia H100 GPU hardware. Predictions typically complete within 14 seconds.
This model doesn't have a readme.
This model is warm. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
This model costs approximately $0.021 to run on Replicate, but this varies depending on your inputs. View more.
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
Using seed: 12948
Prompt: A NOBEL24 gold and black pen sketch illustration of a cat on textured paper
[!] txt2img mode
Using dev model
free=8727123849216
Downloading weights
2024-10-09T12:09:55Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpjodarlt8/weights url=https://replicate.delivery/yhqm/ipGLsptzlT5ZB1QOyfHpaf9L63RHw22JNfZRTjniBtcYeHUOB/trained_model.tar
2024-10-09T12:09:57Z | INFO | [ Complete ] dest=/tmp/tmpjodarlt8/weights size="172 MB" total_elapsed=1.545s url=https://replicate.delivery/yhqm/ipGLsptzlT5ZB1QOyfHpaf9L63RHw22JNfZRTjniBtcYeHUOB/trained_model.tar
Downloaded weights in 1.57s
Loaded LoRAs in 2.35s
0%| | 0/28 [00:00<?, ?it/s]
4%|▎ | 1/28 [00:00<00:09, 2.88it/s]
7%|▋ | 2/28 [00:00<00:08, 3.21it/s]
11%|█ | 3/28 [00:00<00:08, 3.06it/s]
14%|█▍ | 4/28 [00:01<00:08, 2.99it/s]
18%|█▊ | 5/28 [00:01<00:07, 2.95it/s]
21%|██▏ | 6/28 [00:02<00:07, 2.93it/s]
25%|██▌ | 7/28 [00:02<00:07, 2.91it/s]
29%|██▊ | 8/28 [00:02<00:06, 2.90it/s]
32%|███▏ | 9/28 [00:03<00:06, 2.90it/s]
36%|███▌ | 10/28 [00:03<00:06, 2.89it/s]
39%|███▉ | 11/28 [00:03<00:05, 2.89it/s]
43%|████▎ | 12/28 [00:04<00:05, 2.89it/s]
46%|████▋ | 13/28 [00:04<00:05, 2.89it/s]
50%|█████ | 14/28 [00:04<00:04, 2.89it/s]
54%|█████▎ | 15/28 [00:05<00:04, 2.89it/s]
57%|█████▋ | 16/28 [00:05<00:04, 2.89it/s]
61%|██████ | 17/28 [00:05<00:03, 2.89it/s]
64%|██████▍ | 18/28 [00:06<00:03, 2.88it/s]
68%|██████▊ | 19/28 [00:06<00:03, 2.88it/s]
71%|███████▏ | 20/28 [00:06<00:02, 2.88it/s]
75%|███████▌ | 21/28 [00:07<00:02, 2.88it/s]
79%|███████▊ | 22/28 [00:07<00:02, 2.88it/s]
82%|████████▏ | 23/28 [00:07<00:01, 2.88it/s]
86%|████████▌ | 24/28 [00:08<00:01, 2.88it/s]
89%|████████▉ | 25/28 [00:08<00:01, 2.88it/s]
93%|█████████▎| 26/28 [00:08<00:00, 2.88it/s]
96%|█████████▋| 27/28 [00:09<00:00, 2.88it/s]
100%|██████████| 28/28 [00:09<00:00, 2.88it/s]
100%|██████████| 28/28 [00:09<00:00, 2.90it/s]