Readme
This model doesn't have a readme.
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run fofr/flux-tessellate using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"fofr/flux-tessellate:69e760bb6959e7599b6d1a225f56ec09c7777f39ac4073659fa060ae711e78d5",
{
input: {
model: "dev",
prompt: "a TSL8 tessellating repeating pattern of vehicles, side view, all gaps filled, escher",
go_fast: false,
lora_scale: 0.75,
megapixels: "1",
num_outputs: 4,
aspect_ratio: "1:1",
output_format: "webp",
guidance_scale: 2.5,
output_quality: 80,
prompt_strength: 0.8,
extra_lora_scale: 1,
num_inference_steps: 28
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run fofr/flux-tessellate using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"fofr/flux-tessellate:69e760bb6959e7599b6d1a225f56ec09c7777f39ac4073659fa060ae711e78d5",
input={
"model": "dev",
"prompt": "a TSL8 tessellating repeating pattern of vehicles, side view, all gaps filled, escher",
"go_fast": False,
"lora_scale": 0.75,
"megapixels": "1",
"num_outputs": 4,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 2.5,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run fofr/flux-tessellate using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "69e760bb6959e7599b6d1a225f56ec09c7777f39ac4073659fa060ae711e78d5",
"input": {
"model": "dev",
"prompt": "a TSL8 tessellating repeating pattern of vehicles, side view, all gaps filled, escher",
"go_fast": false,
"lora_scale": 0.75,
"megapixels": "1",
"num_outputs": 4,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 2.5,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/fofr/flux-tessellate@sha256:69e760bb6959e7599b6d1a225f56ec09c7777f39ac4073659fa060ae711e78d5 \
-i 'model="dev"' \
-i 'prompt="a TSL8 tessellating repeating pattern of vehicles, side view, all gaps filled, escher"' \
-i 'go_fast=false' \
-i 'lora_scale=0.75' \
-i 'megapixels="1"' \
-i 'num_outputs=4' \
-i 'aspect_ratio="1:1"' \
-i 'output_format="webp"' \
-i 'guidance_scale=2.5' \
-i 'output_quality=80' \
-i 'prompt_strength=0.8' \
-i 'extra_lora_scale=1' \
-i 'num_inference_steps=28'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/fofr/flux-tessellate@sha256:69e760bb6959e7599b6d1a225f56ec09c7777f39ac4073659fa060ae711e78d5
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "model": "dev", "prompt": "a TSL8 tessellating repeating pattern of vehicles, side view, all gaps filled, escher", "go_fast": false, "lora_scale": 0.75, "megapixels": "1", "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 2.5, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2024-08-18T12:15:40.079729Z",
"created_at": "2024-08-18T12:15:09.412000Z",
"data_removed": false,
"error": null,
"id": "ty7vg0xachrm60chcnmtyvjc7w",
"input": {
"model": "dev",
"prompt": "a TSL8 tessellating repeating pattern of vehicles, side view, all gaps filled, escher",
"lora_scale": 0.75,
"num_outputs": 4,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 2.5,
"output_quality": 80,
"num_inference_steps": 28
},
"logs": "Using seed: 65255\nPrompt: a TSL8 tessellating repeating pattern of vehicles, side view, all gaps filled, escher\ntxt2img mode\nUsing dev model\nLoading LoRA weights\nweights already loaded!\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:01<00:27, 1.03s/it]\n 7%|▋ | 2/28 [00:01<00:23, 1.10it/s]\n 11%|█ | 3/28 [00:02<00:24, 1.04it/s]\n 14%|█▍ | 4/28 [00:03<00:23, 1.01it/s]\n 18%|█▊ | 5/28 [00:04<00:23, 1.01s/it]\n 21%|██▏ | 6/28 [00:05<00:22, 1.01s/it]\n 25%|██▌ | 7/28 [00:07<00:21, 1.02s/it]\n 29%|██▊ | 8/28 [00:08<00:20, 1.02s/it]\n 32%|███▏ | 9/28 [00:09<00:19, 1.03s/it]\n 36%|███▌ | 10/28 [00:10<00:18, 1.03s/it]\n 39%|███▉ | 11/28 [00:11<00:17, 1.03s/it]\n 43%|████▎ | 12/28 [00:12<00:16, 1.03s/it]\n 46%|████▋ | 13/28 [00:13<00:15, 1.03s/it]\n 50%|█████ | 14/28 [00:14<00:14, 1.03s/it]\n 54%|█████▎ | 15/28 [00:15<00:13, 1.03s/it]\n 57%|█████▋ | 16/28 [00:16<00:12, 1.03s/it]\n 61%|██████ | 17/28 [00:17<00:11, 1.03s/it]\n 64%|██████▍ | 18/28 [00:18<00:10, 1.03s/it]\n 68%|██████▊ | 19/28 [00:19<00:09, 1.03s/it]\n 71%|███████▏ | 20/28 [00:20<00:08, 1.03s/it]\n 75%|███████▌ | 21/28 [00:21<00:07, 1.03s/it]\n 79%|███████▊ | 22/28 [00:22<00:06, 1.03s/it]\n 82%|████████▏ | 23/28 [00:23<00:05, 1.03s/it]\n 86%|████████▌ | 24/28 [00:24<00:04, 1.03s/it]\n 89%|████████▉ | 25/28 [00:25<00:03, 1.03s/it]\n 93%|█████████▎| 26/28 [00:26<00:02, 1.03s/it]\n 96%|█████████▋| 27/28 [00:27<00:01, 1.03s/it]\n100%|██████████| 28/28 [00:28<00:00, 1.03s/it]\n100%|██████████| 28/28 [00:28<00:00, 1.03s/it]",
"metrics": {
"predict_time": 30.632025025,
"total_time": 30.667729
},
"output": [
"https://replicate.delivery/yhqm/R0fmHDhWoh2UPSfQfJ4hnvKTLaBMsyx3mZ09eC5jf9Id9Lf0E/out-0.webp",
"https://replicate.delivery/yhqm/XfpluFefEVSfURRzYq2lOmWIFeffwcFaXBPs5qTUguEx1v8pJA/out-1.webp",
"https://replicate.delivery/yhqm/OOHTsH3kayreGyJ7KniS0rcDMFJp8RSuYIWb2wvhZFw1v8pJA/out-2.webp",
"https://replicate.delivery/yhqm/RNlNCf15nhxsWigrYBlQOne0AxbJqQcTnfucfiopOfrc9Lf0E/out-3.webp"
],
"started_at": "2024-08-18T12:15:09.447704Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/ty7vg0xachrm60chcnmtyvjc7w",
"cancel": "https://api.replicate.com/v1/predictions/ty7vg0xachrm60chcnmtyvjc7w/cancel"
},
"version": "69e760bb6959e7599b6d1a225f56ec09c7777f39ac4073659fa060ae711e78d5"
}
Using seed: 65255
Prompt: a TSL8 tessellating repeating pattern of vehicles, side view, all gaps filled, escher
txt2img mode
Using dev model
Loading LoRA weights
weights already loaded!
0%| | 0/28 [00:00<?, ?it/s]
4%|▎ | 1/28 [00:01<00:27, 1.03s/it]
7%|▋ | 2/28 [00:01<00:23, 1.10it/s]
11%|█ | 3/28 [00:02<00:24, 1.04it/s]
14%|█▍ | 4/28 [00:03<00:23, 1.01it/s]
18%|█▊ | 5/28 [00:04<00:23, 1.01s/it]
21%|██▏ | 6/28 [00:05<00:22, 1.01s/it]
25%|██▌ | 7/28 [00:07<00:21, 1.02s/it]
29%|██▊ | 8/28 [00:08<00:20, 1.02s/it]
32%|███▏ | 9/28 [00:09<00:19, 1.03s/it]
36%|███▌ | 10/28 [00:10<00:18, 1.03s/it]
39%|███▉ | 11/28 [00:11<00:17, 1.03s/it]
43%|████▎ | 12/28 [00:12<00:16, 1.03s/it]
46%|████▋ | 13/28 [00:13<00:15, 1.03s/it]
50%|█████ | 14/28 [00:14<00:14, 1.03s/it]
54%|█████▎ | 15/28 [00:15<00:13, 1.03s/it]
57%|█████▋ | 16/28 [00:16<00:12, 1.03s/it]
61%|██████ | 17/28 [00:17<00:11, 1.03s/it]
64%|██████▍ | 18/28 [00:18<00:10, 1.03s/it]
68%|██████▊ | 19/28 [00:19<00:09, 1.03s/it]
71%|███████▏ | 20/28 [00:20<00:08, 1.03s/it]
75%|███████▌ | 21/28 [00:21<00:07, 1.03s/it]
79%|███████▊ | 22/28 [00:22<00:06, 1.03s/it]
82%|████████▏ | 23/28 [00:23<00:05, 1.03s/it]
86%|████████▌ | 24/28 [00:24<00:04, 1.03s/it]
89%|████████▉ | 25/28 [00:25<00:03, 1.03s/it]
93%|█████████▎| 26/28 [00:26<00:02, 1.03s/it]
96%|█████████▋| 27/28 [00:27<00:01, 1.03s/it]
100%|██████████| 28/28 [00:28<00:00, 1.03s/it]
100%|██████████| 28/28 [00:28<00:00, 1.03s/it]
This model runs on Nvidia H100 GPU hardware. We don't yet have enough runs of this model to provide performance information.
This model doesn't have a readme.
This model is warm. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
Using seed: 65255
Prompt: a TSL8 tessellating repeating pattern of vehicles, side view, all gaps filled, escher
txt2img mode
Using dev model
Loading LoRA weights
weights already loaded!
0%| | 0/28 [00:00<?, ?it/s]
4%|▎ | 1/28 [00:01<00:27, 1.03s/it]
7%|▋ | 2/28 [00:01<00:23, 1.10it/s]
11%|█ | 3/28 [00:02<00:24, 1.04it/s]
14%|█▍ | 4/28 [00:03<00:23, 1.01it/s]
18%|█▊ | 5/28 [00:04<00:23, 1.01s/it]
21%|██▏ | 6/28 [00:05<00:22, 1.01s/it]
25%|██▌ | 7/28 [00:07<00:21, 1.02s/it]
29%|██▊ | 8/28 [00:08<00:20, 1.02s/it]
32%|███▏ | 9/28 [00:09<00:19, 1.03s/it]
36%|███▌ | 10/28 [00:10<00:18, 1.03s/it]
39%|███▉ | 11/28 [00:11<00:17, 1.03s/it]
43%|████▎ | 12/28 [00:12<00:16, 1.03s/it]
46%|████▋ | 13/28 [00:13<00:15, 1.03s/it]
50%|█████ | 14/28 [00:14<00:14, 1.03s/it]
54%|█████▎ | 15/28 [00:15<00:13, 1.03s/it]
57%|█████▋ | 16/28 [00:16<00:12, 1.03s/it]
61%|██████ | 17/28 [00:17<00:11, 1.03s/it]
64%|██████▍ | 18/28 [00:18<00:10, 1.03s/it]
68%|██████▊ | 19/28 [00:19<00:09, 1.03s/it]
71%|███████▏ | 20/28 [00:20<00:08, 1.03s/it]
75%|███████▌ | 21/28 [00:21<00:07, 1.03s/it]
79%|███████▊ | 22/28 [00:22<00:06, 1.03s/it]
82%|████████▏ | 23/28 [00:23<00:05, 1.03s/it]
86%|████████▌ | 24/28 [00:24<00:04, 1.03s/it]
89%|████████▉ | 25/28 [00:25<00:03, 1.03s/it]
93%|█████████▎| 26/28 [00:26<00:02, 1.03s/it]
96%|█████████▋| 27/28 [00:27<00:01, 1.03s/it]
100%|██████████| 28/28 [00:28<00:00, 1.03s/it]
100%|██████████| 28/28 [00:28<00:00, 1.03s/it]