fofr / flux-tron-ares
Flux fine-tuned on TRON: ARES
- Public
- 119 runs
-
H100
Prediction
fofr/flux-tron-ares:b5ea550026e196b614e1509621cedcc0d05110b1133872e160bcdd8b1c8d01f6IDbb0tm515pnrmc0cp143tqfh3xwStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- a TRON_ARES portrait photo of a cyberpunk with domed helmet, brilliant red energy beams streak across a dark night cityscape
- go_fast
- lora_scale
- 1
- megapixels
- 1
- num_outputs
- 1
- aspect_ratio
- 16:9
- output_format
- webp
- guidance_scale
- 3
- output_quality
- 80
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "a TRON_ARES portrait photo of a cyberpunk with domed helmet, brilliant red energy beams streak across a dark night cityscape", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "16:9", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run fofr/flux-tron-ares using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "fofr/flux-tron-ares:b5ea550026e196b614e1509621cedcc0d05110b1133872e160bcdd8b1c8d01f6", { input: { model: "dev", prompt: "a TRON_ARES portrait photo of a cyberpunk with domed helmet, brilliant red energy beams streak across a dark night cityscape", go_fast: false, lora_scale: 1, megapixels: "1", num_outputs: 1, aspect_ratio: "16:9", output_format: "webp", guidance_scale: 3, output_quality: 80, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run fofr/flux-tron-ares using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "fofr/flux-tron-ares:b5ea550026e196b614e1509621cedcc0d05110b1133872e160bcdd8b1c8d01f6", input={ "model": "dev", "prompt": "a TRON_ARES portrait photo of a cyberpunk with domed helmet, brilliant red energy beams streak across a dark night cityscape", "go_fast": False, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "16:9", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run fofr/flux-tron-ares using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "fofr/flux-tron-ares:b5ea550026e196b614e1509621cedcc0d05110b1133872e160bcdd8b1c8d01f6", "input": { "model": "dev", "prompt": "a TRON_ARES portrait photo of a cyberpunk with domed helmet, brilliant red energy beams streak across a dark night cityscape", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "16:9", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2025-04-06T02:56:37.064575Z", "created_at": "2025-04-06T02:56:25.525000Z", "data_removed": false, "error": null, "id": "bb0tm515pnrmc0cp143tqfh3xw", "input": { "model": "dev", "prompt": "a TRON_ARES portrait photo of a cyberpunk with domed helmet, brilliant red energy beams streak across a dark night cityscape", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "16:9", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "free=26140683595776\nDownloading weights\n2025-04-06T02:56:26Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpf8wbj16_/weights url=https://replicate.delivery/xezq/shzJywPH7t5BExhTc8NGQz48kM7Q7lLyHM6HtzN5N4tme8PKA/trained_model.tar\n2025-04-06T02:56:27Z | INFO | [ Complete ] dest=/tmp/tmpf8wbj16_/weights size=\"172 MB\" total_elapsed=0.796s url=https://replicate.delivery/xezq/shzJywPH7t5BExhTc8NGQz48kM7Q7lLyHM6HtzN5N4tme8PKA/trained_model.tar\nDownloaded weights in 0.82s\nLoaded LoRAs in 3.33s\nUsing seed: 9879\nPrompt: a TRON_ARES portrait photo of a cyberpunk with domed helmet, brilliant red energy beams streak across a dark night cityscape\n[!] txt2img mode\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.85it/s]\n 7%|▋ | 2/28 [00:00<00:05, 4.37it/s]\n 11%|█ | 3/28 [00:00<00:06, 4.12it/s]\n 14%|█▍ | 4/28 [00:00<00:05, 4.02it/s]\n 18%|█▊ | 5/28 [00:01<00:05, 3.96it/s]\n 21%|██▏ | 6/28 [00:01<00:05, 3.92it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.90it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.89it/s]\n 32%|███▏ | 9/28 [00:02<00:04, 3.88it/s]\n 36%|███▌ | 10/28 [00:02<00:04, 3.88it/s]\n 39%|███▉ | 11/28 [00:02<00:04, 3.87it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.87it/s]\n 46%|████▋ | 13/28 [00:03<00:03, 3.86it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.86it/s]\n 54%|█████▎ | 15/28 [00:03<00:03, 3.85it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.85it/s]\n 61%|██████ | 17/28 [00:04<00:02, 3.86it/s]\n 64%|██████▍ | 18/28 [00:04<00:02, 3.86it/s]\n 68%|██████▊ | 19/28 [00:04<00:02, 3.86it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.86it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.86it/s]\n 79%|███████▊ | 22/28 [00:05<00:01, 3.85it/s]\n 82%|████████▏ | 23/28 [00:05<00:01, 3.86it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.86it/s]\n 89%|████████▉ | 25/28 [00:06<00:00, 3.86it/s]\n 93%|█████████▎| 26/28 [00:06<00:00, 3.86it/s]\n 96%|█████████▋| 27/28 [00:06<00:00, 3.86it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.86it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.89it/s]\nTotal safe images: 1 out of 1", "metrics": { "predict_time": 10.802625173, "total_time": 11.539575 }, "output": [ "https://replicate.delivery/xezq/cjNTwSjsCSK9OdKmvLbbwium0pH9EmY4UVMmh3yzwsYZf8PKA/out-0.webp" ], "started_at": "2025-04-06T02:56:26.261950Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/bcwr-v4apqibupy6disvmhs3ulnll3r4bnsezgz32ysmj23oobbv4ce2q", "get": "https://api.replicate.com/v1/predictions/bb0tm515pnrmc0cp143tqfh3xw", "cancel": "https://api.replicate.com/v1/predictions/bb0tm515pnrmc0cp143tqfh3xw/cancel" }, "version": "b5ea550026e196b614e1509621cedcc0d05110b1133872e160bcdd8b1c8d01f6" }
Generated infree=26140683595776 Downloading weights 2025-04-06T02:56:26Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpf8wbj16_/weights url=https://replicate.delivery/xezq/shzJywPH7t5BExhTc8NGQz48kM7Q7lLyHM6HtzN5N4tme8PKA/trained_model.tar 2025-04-06T02:56:27Z | INFO | [ Complete ] dest=/tmp/tmpf8wbj16_/weights size="172 MB" total_elapsed=0.796s url=https://replicate.delivery/xezq/shzJywPH7t5BExhTc8NGQz48kM7Q7lLyHM6HtzN5N4tme8PKA/trained_model.tar Downloaded weights in 0.82s Loaded LoRAs in 3.33s Using seed: 9879 Prompt: a TRON_ARES portrait photo of a cyberpunk with domed helmet, brilliant red energy beams streak across a dark night cityscape [!] txt2img mode 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.85it/s] 7%|▋ | 2/28 [00:00<00:05, 4.37it/s] 11%|█ | 3/28 [00:00<00:06, 4.12it/s] 14%|█▍ | 4/28 [00:00<00:05, 4.02it/s] 18%|█▊ | 5/28 [00:01<00:05, 3.96it/s] 21%|██▏ | 6/28 [00:01<00:05, 3.92it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.90it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.89it/s] 32%|███▏ | 9/28 [00:02<00:04, 3.88it/s] 36%|███▌ | 10/28 [00:02<00:04, 3.88it/s] 39%|███▉ | 11/28 [00:02<00:04, 3.87it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.87it/s] 46%|████▋ | 13/28 [00:03<00:03, 3.86it/s] 50%|█████ | 14/28 [00:03<00:03, 3.86it/s] 54%|█████▎ | 15/28 [00:03<00:03, 3.85it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.85it/s] 61%|██████ | 17/28 [00:04<00:02, 3.86it/s] 64%|██████▍ | 18/28 [00:04<00:02, 3.86it/s] 68%|██████▊ | 19/28 [00:04<00:02, 3.86it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.86it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.86it/s] 79%|███████▊ | 22/28 [00:05<00:01, 3.85it/s] 82%|████████▏ | 23/28 [00:05<00:01, 3.86it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.86it/s] 89%|████████▉ | 25/28 [00:06<00:00, 3.86it/s] 93%|█████████▎| 26/28 [00:06<00:00, 3.86it/s] 96%|█████████▋| 27/28 [00:06<00:00, 3.86it/s] 100%|██████████| 28/28 [00:07<00:00, 3.86it/s] 100%|██████████| 28/28 [00:07<00:00, 3.89it/s] Total safe images: 1 out of 1
Prediction
fofr/flux-tron-ares:b5ea550026e196b614e1509621cedcc0d05110b1133872e160bcdd8b1c8d01f6IDt6b7g7222srma0cp1448n7mbcrStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- a TRON_ARES portrait photo
- go_fast
- lora_scale
- 1
- megapixels
- 1
- num_outputs
- 1
- aspect_ratio
- 3:4
- output_format
- webp
- guidance_scale
- 3
- output_quality
- 80
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "a TRON_ARES portrait photo", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "3:4", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run fofr/flux-tron-ares using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "fofr/flux-tron-ares:b5ea550026e196b614e1509621cedcc0d05110b1133872e160bcdd8b1c8d01f6", { input: { model: "dev", prompt: "a TRON_ARES portrait photo", go_fast: false, lora_scale: 1, megapixels: "1", num_outputs: 1, aspect_ratio: "3:4", output_format: "webp", guidance_scale: 3, output_quality: 80, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run fofr/flux-tron-ares using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "fofr/flux-tron-ares:b5ea550026e196b614e1509621cedcc0d05110b1133872e160bcdd8b1c8d01f6", input={ "model": "dev", "prompt": "a TRON_ARES portrait photo", "go_fast": False, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "3:4", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run fofr/flux-tron-ares using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "fofr/flux-tron-ares:b5ea550026e196b614e1509621cedcc0d05110b1133872e160bcdd8b1c8d01f6", "input": { "model": "dev", "prompt": "a TRON_ARES portrait photo", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "3:4", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2025-04-06T02:57:49.464335Z", "created_at": "2025-04-06T02:57:38.326000Z", "data_removed": false, "error": null, "id": "t6b7g7222srma0cp1448n7mbcr", "input": { "model": "dev", "prompt": "a TRON_ARES portrait photo", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "3:4", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "free=25275940728832\nDownloading weights\n2025-04-06T02:57:38Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpov639kb7/weights url=https://replicate.delivery/xezq/shzJywPH7t5BExhTc8NGQz48kM7Q7lLyHM6HtzN5N4tme8PKA/trained_model.tar\n2025-04-06T02:57:41Z | INFO | [ Complete ] dest=/tmp/tmpov639kb7/weights size=\"172 MB\" total_elapsed=2.493s url=https://replicate.delivery/xezq/shzJywPH7t5BExhTc8NGQz48kM7Q7lLyHM6HtzN5N4tme8PKA/trained_model.tar\nDownloaded weights in 2.51s\nLoaded LoRAs in 3.07s\nUsing seed: 18804\nPrompt: a TRON_ARES portrait photo\n[!] txt2img mode\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.85it/s]\n 7%|▋ | 2/28 [00:00<00:05, 4.37it/s]\n 11%|█ | 3/28 [00:00<00:06, 4.13it/s]\n 14%|█▍ | 4/28 [00:00<00:05, 4.01it/s]\n 18%|█▊ | 5/28 [00:01<00:05, 3.95it/s]\n 21%|██▏ | 6/28 [00:01<00:05, 3.91it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.89it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.87it/s]\n 32%|███▏ | 9/28 [00:02<00:04, 3.86it/s]\n 36%|███▌ | 10/28 [00:02<00:04, 3.85it/s]\n 39%|███▉ | 11/28 [00:02<00:04, 3.85it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.85it/s]\n 46%|████▋ | 13/28 [00:03<00:03, 3.85it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.85it/s]\n 54%|█████▎ | 15/28 [00:03<00:03, 3.85it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.85it/s]\n 61%|██████ | 17/28 [00:04<00:02, 3.85it/s]\n 64%|██████▍ | 18/28 [00:04<00:02, 3.84it/s]\n 68%|██████▊ | 19/28 [00:04<00:02, 3.84it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.85it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.85it/s]\n 79%|███████▊ | 22/28 [00:05<00:01, 3.85it/s]\n 82%|████████▏ | 23/28 [00:05<00:01, 3.85it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.85it/s]\n 89%|████████▉ | 25/28 [00:06<00:00, 3.84it/s]\n 93%|█████████▎| 26/28 [00:06<00:00, 3.84it/s]\n 96%|█████████▋| 27/28 [00:06<00:00, 3.84it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.84it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.87it/s]\nTotal safe images: 1 out of 1", "metrics": { "predict_time": 10.567871062, "total_time": 11.138335 }, "output": [ "https://replicate.delivery/xezq/W1jbcsd01OqXFBnc0eLy2fpWekrq3UlyOrH7OowPURnb9zfRB/out-0.webp" ], "started_at": "2025-04-06T02:57:38.896464Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/bcwr-mjmdrgxlhs4hmeoysmtwq4hf4d3szm65kliemvqq3e7cj2kf5l5a", "get": "https://api.replicate.com/v1/predictions/t6b7g7222srma0cp1448n7mbcr", "cancel": "https://api.replicate.com/v1/predictions/t6b7g7222srma0cp1448n7mbcr/cancel" }, "version": "b5ea550026e196b614e1509621cedcc0d05110b1133872e160bcdd8b1c8d01f6" }
Generated infree=25275940728832 Downloading weights 2025-04-06T02:57:38Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpov639kb7/weights url=https://replicate.delivery/xezq/shzJywPH7t5BExhTc8NGQz48kM7Q7lLyHM6HtzN5N4tme8PKA/trained_model.tar 2025-04-06T02:57:41Z | INFO | [ Complete ] dest=/tmp/tmpov639kb7/weights size="172 MB" total_elapsed=2.493s url=https://replicate.delivery/xezq/shzJywPH7t5BExhTc8NGQz48kM7Q7lLyHM6HtzN5N4tme8PKA/trained_model.tar Downloaded weights in 2.51s Loaded LoRAs in 3.07s Using seed: 18804 Prompt: a TRON_ARES portrait photo [!] txt2img mode 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.85it/s] 7%|▋ | 2/28 [00:00<00:05, 4.37it/s] 11%|█ | 3/28 [00:00<00:06, 4.13it/s] 14%|█▍ | 4/28 [00:00<00:05, 4.01it/s] 18%|█▊ | 5/28 [00:01<00:05, 3.95it/s] 21%|██▏ | 6/28 [00:01<00:05, 3.91it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.89it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.87it/s] 32%|███▏ | 9/28 [00:02<00:04, 3.86it/s] 36%|███▌ | 10/28 [00:02<00:04, 3.85it/s] 39%|███▉ | 11/28 [00:02<00:04, 3.85it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.85it/s] 46%|████▋ | 13/28 [00:03<00:03, 3.85it/s] 50%|█████ | 14/28 [00:03<00:03, 3.85it/s] 54%|█████▎ | 15/28 [00:03<00:03, 3.85it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.85it/s] 61%|██████ | 17/28 [00:04<00:02, 3.85it/s] 64%|██████▍ | 18/28 [00:04<00:02, 3.84it/s] 68%|██████▊ | 19/28 [00:04<00:02, 3.84it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.85it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.85it/s] 79%|███████▊ | 22/28 [00:05<00:01, 3.85it/s] 82%|████████▏ | 23/28 [00:05<00:01, 3.85it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.85it/s] 89%|████████▉ | 25/28 [00:06<00:00, 3.84it/s] 93%|█████████▎| 26/28 [00:06<00:00, 3.84it/s] 96%|█████████▋| 27/28 [00:06<00:00, 3.84it/s] 100%|██████████| 28/28 [00:07<00:00, 3.84it/s] 100%|██████████| 28/28 [00:07<00:00, 3.87it/s] Total safe images: 1 out of 1
Prediction
fofr/flux-tron-ares:b5ea550026e196b614e1509621cedcc0d05110b1133872e160bcdd8b1c8d01f6ID1jw6dw5vj9rma0cp143tmjpt30StatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- a TRON_ARES portrait photo
- go_fast
- lora_scale
- 1
- megapixels
- 1
- num_outputs
- 1
- aspect_ratio
- 3:4
- output_format
- webp
- guidance_scale
- 3
- output_quality
- 80
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "a TRON_ARES portrait photo", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "3:4", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run fofr/flux-tron-ares using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "fofr/flux-tron-ares:b5ea550026e196b614e1509621cedcc0d05110b1133872e160bcdd8b1c8d01f6", { input: { model: "dev", prompt: "a TRON_ARES portrait photo", go_fast: false, lora_scale: 1, megapixels: "1", num_outputs: 1, aspect_ratio: "3:4", output_format: "webp", guidance_scale: 3, output_quality: 80, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run fofr/flux-tron-ares using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "fofr/flux-tron-ares:b5ea550026e196b614e1509621cedcc0d05110b1133872e160bcdd8b1c8d01f6", input={ "model": "dev", "prompt": "a TRON_ARES portrait photo", "go_fast": False, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "3:4", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run fofr/flux-tron-ares using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "fofr/flux-tron-ares:b5ea550026e196b614e1509621cedcc0d05110b1133872e160bcdd8b1c8d01f6", "input": { "model": "dev", "prompt": "a TRON_ARES portrait photo", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "3:4", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2025-04-06T02:57:18.390059Z", "created_at": "2025-04-06T02:57:03.890000Z", "data_removed": false, "error": null, "id": "1jw6dw5vj9rma0cp143tmjpt30", "input": { "model": "dev", "prompt": "a TRON_ARES portrait photo", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "3:4", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "free=28083740778496\nDownloading weights\n2025-04-06T02:57:03Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpffulgcn1/weights url=https://replicate.delivery/xezq/shzJywPH7t5BExhTc8NGQz48kM7Q7lLyHM6HtzN5N4tme8PKA/trained_model.tar\n2025-04-06T02:57:10Z | INFO | [ Complete ] dest=/tmp/tmpffulgcn1/weights size=\"172 MB\" total_elapsed=6.364s url=https://replicate.delivery/xezq/shzJywPH7t5BExhTc8NGQz48kM7Q7lLyHM6HtzN5N4tme8PKA/trained_model.tar\nDownloaded weights in 6.38s\nLoaded LoRAs in 6.94s\nUsing seed: 45358\nPrompt: a TRON_ARES portrait photo\n[!] txt2img mode\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.84it/s]\n 7%|▋ | 2/28 [00:00<00:05, 4.35it/s]\n 11%|█ | 3/28 [00:00<00:06, 4.10it/s]\n 14%|█▍ | 4/28 [00:00<00:06, 4.00it/s]\n 18%|█▊ | 5/28 [00:01<00:05, 3.93it/s]\n 21%|██▏ | 6/28 [00:01<00:05, 3.90it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.88it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.86it/s]\n 32%|███▏ | 9/28 [00:02<00:04, 3.85it/s]\n 36%|███▌ | 10/28 [00:02<00:04, 3.84it/s]\n 39%|███▉ | 11/28 [00:02<00:04, 3.84it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.84it/s]\n 46%|████▋ | 13/28 [00:03<00:03, 3.84it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.84it/s]\n 54%|█████▎ | 15/28 [00:03<00:03, 3.84it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.84it/s]\n 61%|██████ | 17/28 [00:04<00:02, 3.84it/s]\n 64%|██████▍ | 18/28 [00:04<00:02, 3.84it/s]\n 68%|██████▊ | 19/28 [00:04<00:02, 3.84it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.84it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.83it/s]\n 79%|███████▊ | 22/28 [00:05<00:01, 3.83it/s]\n 82%|████████▏ | 23/28 [00:05<00:01, 3.84it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.84it/s]\n 89%|████████▉ | 25/28 [00:06<00:00, 3.84it/s]\n 93%|█████████▎| 26/28 [00:06<00:00, 3.84it/s]\n 96%|█████████▋| 27/28 [00:06<00:00, 3.84it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.84it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.86it/s]\nTotal safe images: 1 out of 1", "metrics": { "predict_time": 14.454610126, "total_time": 14.500059 }, "output": [ "https://replicate.delivery/xezq/IhUydhH6p5adEFLqQKkS0Ne7rcoz7iGEbmvL2P6PQ5RHf5foA/out-0.webp" ], "started_at": "2025-04-06T02:57:03.935449Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/bcwr-gou66scd7lmqn424s6modaj6bqacr2digzl5iiclvvvjwchllsoq", "get": "https://api.replicate.com/v1/predictions/1jw6dw5vj9rma0cp143tmjpt30", "cancel": "https://api.replicate.com/v1/predictions/1jw6dw5vj9rma0cp143tmjpt30/cancel" }, "version": "b5ea550026e196b614e1509621cedcc0d05110b1133872e160bcdd8b1c8d01f6" }
Generated infree=28083740778496 Downloading weights 2025-04-06T02:57:03Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpffulgcn1/weights url=https://replicate.delivery/xezq/shzJywPH7t5BExhTc8NGQz48kM7Q7lLyHM6HtzN5N4tme8PKA/trained_model.tar 2025-04-06T02:57:10Z | INFO | [ Complete ] dest=/tmp/tmpffulgcn1/weights size="172 MB" total_elapsed=6.364s url=https://replicate.delivery/xezq/shzJywPH7t5BExhTc8NGQz48kM7Q7lLyHM6HtzN5N4tme8PKA/trained_model.tar Downloaded weights in 6.38s Loaded LoRAs in 6.94s Using seed: 45358 Prompt: a TRON_ARES portrait photo [!] txt2img mode 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.84it/s] 7%|▋ | 2/28 [00:00<00:05, 4.35it/s] 11%|█ | 3/28 [00:00<00:06, 4.10it/s] 14%|█▍ | 4/28 [00:00<00:06, 4.00it/s] 18%|█▊ | 5/28 [00:01<00:05, 3.93it/s] 21%|██▏ | 6/28 [00:01<00:05, 3.90it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.88it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.86it/s] 32%|███▏ | 9/28 [00:02<00:04, 3.85it/s] 36%|███▌ | 10/28 [00:02<00:04, 3.84it/s] 39%|███▉ | 11/28 [00:02<00:04, 3.84it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.84it/s] 46%|████▋ | 13/28 [00:03<00:03, 3.84it/s] 50%|█████ | 14/28 [00:03<00:03, 3.84it/s] 54%|█████▎ | 15/28 [00:03<00:03, 3.84it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.84it/s] 61%|██████ | 17/28 [00:04<00:02, 3.84it/s] 64%|██████▍ | 18/28 [00:04<00:02, 3.84it/s] 68%|██████▊ | 19/28 [00:04<00:02, 3.84it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.84it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.83it/s] 79%|███████▊ | 22/28 [00:05<00:01, 3.83it/s] 82%|████████▏ | 23/28 [00:05<00:01, 3.84it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.84it/s] 89%|████████▉ | 25/28 [00:06<00:00, 3.84it/s] 93%|█████████▎| 26/28 [00:06<00:00, 3.84it/s] 96%|█████████▋| 27/28 [00:06<00:00, 3.84it/s] 100%|██████████| 28/28 [00:07<00:00, 3.84it/s] 100%|██████████| 28/28 [00:07<00:00, 3.86it/s] Total safe images: 1 out of 1
Want to make some of these yourself?
Run this model