fofr
/
sdxl-fresh-ink
SDXL fine-tuned on photos of freshly inked tattoos
- Public
- 76.9K runs
-
L40S
- SDXL fine-tune
Prediction
fofr/sdxl-fresh-ink:8515c238222fa529763ec99b4ba1fa9d32ab5d6ebc82b4281de99e4dbdcec943IDqxwo2ylbjcpcobsx5ouimg7x3aStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- A fresh ink TOK tattoo
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER
- lora_scale
- 0.6
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.9
- negative_prompt
- ugly, broken, distorted
- prompt_strength
- 0.8
- num_inference_steps
- 25
{ "width": 1024, "height": 1024, "prompt": "A fresh ink TOK tattoo", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": false, "high_noise_frac": 0.9, "negative_prompt": "ugly, broken, distorted", "prompt_strength": 0.8, "num_inference_steps": 25 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run fofr/sdxl-fresh-ink using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "fofr/sdxl-fresh-ink:8515c238222fa529763ec99b4ba1fa9d32ab5d6ebc82b4281de99e4dbdcec943", { input: { width: 1024, height: 1024, prompt: "A fresh ink TOK tattoo", refine: "expert_ensemble_refiner", scheduler: "K_EULER", lora_scale: 0.6, num_outputs: 1, guidance_scale: 7.5, apply_watermark: false, high_noise_frac: 0.9, negative_prompt: "ugly, broken, distorted", prompt_strength: 0.8, num_inference_steps: 25 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run fofr/sdxl-fresh-ink using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "fofr/sdxl-fresh-ink:8515c238222fa529763ec99b4ba1fa9d32ab5d6ebc82b4281de99e4dbdcec943", input={ "width": 1024, "height": 1024, "prompt": "A fresh ink TOK tattoo", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": False, "high_noise_frac": 0.9, "negative_prompt": "ugly, broken, distorted", "prompt_strength": 0.8, "num_inference_steps": 25 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run fofr/sdxl-fresh-ink using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "8515c238222fa529763ec99b4ba1fa9d32ab5d6ebc82b4281de99e4dbdcec943", "input": { "width": 1024, "height": 1024, "prompt": "A fresh ink TOK tattoo", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": false, "high_noise_frac": 0.9, "negative_prompt": "ugly, broken, distorted", "prompt_strength": 0.8, "num_inference_steps": 25 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-01-09T16:48:48.991666Z", "created_at": "2024-01-09T16:48:36.980298Z", "data_removed": false, "error": null, "id": "qxwo2ylbjcpcobsx5ouimg7x3a", "input": { "width": 1024, "height": 1024, "prompt": "A fresh ink TOK tattoo", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": false, "high_noise_frac": 0.9, "negative_prompt": "ugly, broken, distorted", "prompt_strength": 0.8, "num_inference_steps": 25 }, "logs": "Using seed: 33170\nEnsuring enough disk space...\nFree disk space: 2130453733376\nDownloading weights: https://replicate.delivery/pbxt/GueLVKd75jxiXKEAmKAIV0dSwa0f7aHMYIl0itvXuFlRekVkA/trained_model.tar\n2024-01-09T16:48:40Z | INFO | [ Initiating ] dest=/src/weights-cache/9f5b12ce3d673053 minimum_chunk_size=150M url=https://replicate.delivery/pbxt/GueLVKd75jxiXKEAmKAIV0dSwa0f7aHMYIl0itvXuFlRekVkA/trained_model.tar\n2024-01-09T16:48:41Z | INFO | [ Complete ] dest=/src/weights-cache/9f5b12ce3d673053 size=\"186 MB\" total_elapsed=0.820s url=https://replicate.delivery/pbxt/GueLVKd75jxiXKEAmKAIV0dSwa0f7aHMYIl0itvXuFlRekVkA/trained_model.tar\nb''\nDownloaded weights in 0.9461627006530762 seconds\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: A fresh ink <s0><s1> tattoo\ntxt2img mode\n 0%| | 0/18 [00:00<?, ?it/s]\n 6%|▌ | 1/18 [00:00<00:04, 3.72it/s]\n 11%|█ | 2/18 [00:00<00:04, 3.69it/s]\n 17%|█▋ | 3/18 [00:00<00:04, 3.69it/s]\n 22%|██▏ | 4/18 [00:01<00:03, 3.68it/s]\n 28%|██▊ | 5/18 [00:01<00:03, 3.69it/s]\n 33%|███▎ | 6/18 [00:01<00:03, 3.69it/s]\n 39%|███▉ | 7/18 [00:01<00:02, 3.68it/s]\n 44%|████▍ | 8/18 [00:02<00:02, 3.68it/s]\n 50%|█████ | 9/18 [00:02<00:02, 3.68it/s]\n 56%|█████▌ | 10/18 [00:02<00:02, 3.69it/s]\n 61%|██████ | 11/18 [00:02<00:01, 3.69it/s]\n 67%|██████▋ | 12/18 [00:03<00:01, 3.69it/s]\n 72%|███████▏ | 13/18 [00:03<00:01, 3.69it/s]\n 78%|███████▊ | 14/18 [00:03<00:01, 3.69it/s]\n 83%|████████▎ | 15/18 [00:04<00:00, 3.69it/s]\n 89%|████████▉ | 16/18 [00:04<00:00, 3.69it/s]\n 94%|█████████▍| 17/18 [00:04<00:00, 3.69it/s]\n100%|██████████| 18/18 [00:04<00:00, 3.69it/s]\n100%|██████████| 18/18 [00:04<00:00, 3.69it/s]\n 0%| | 0/3 [00:00<?, ?it/s]\n 33%|███▎ | 1/3 [00:00<00:00, 4.31it/s]\n 67%|██████▋ | 2/3 [00:00<00:00, 4.27it/s]\n100%|██████████| 3/3 [00:00<00:00, 4.27it/s]\n100%|██████████| 3/3 [00:00<00:00, 4.28it/s]", "metrics": { "predict_time": 8.706767, "total_time": 12.011368 }, "output": [ "https://replicate.delivery/pbxt/KXrjXKjczHK6MxVIjgoCeJffm0uP5LlzEyPrHjwceeXDeqsiE/out-0.png" ], "started_at": "2024-01-09T16:48:40.284899Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/qxwo2ylbjcpcobsx5ouimg7x3a", "cancel": "https://api.replicate.com/v1/predictions/qxwo2ylbjcpcobsx5ouimg7x3a/cancel" }, "version": "8515c238222fa529763ec99b4ba1fa9d32ab5d6ebc82b4281de99e4dbdcec943" }
Generated inUsing seed: 33170 Ensuring enough disk space... Free disk space: 2130453733376 Downloading weights: https://replicate.delivery/pbxt/GueLVKd75jxiXKEAmKAIV0dSwa0f7aHMYIl0itvXuFlRekVkA/trained_model.tar 2024-01-09T16:48:40Z | INFO | [ Initiating ] dest=/src/weights-cache/9f5b12ce3d673053 minimum_chunk_size=150M url=https://replicate.delivery/pbxt/GueLVKd75jxiXKEAmKAIV0dSwa0f7aHMYIl0itvXuFlRekVkA/trained_model.tar 2024-01-09T16:48:41Z | INFO | [ Complete ] dest=/src/weights-cache/9f5b12ce3d673053 size="186 MB" total_elapsed=0.820s url=https://replicate.delivery/pbxt/GueLVKd75jxiXKEAmKAIV0dSwa0f7aHMYIl0itvXuFlRekVkA/trained_model.tar b'' Downloaded weights in 0.9461627006530762 seconds Loading fine-tuned model Does not have Unet. assume we are using LoRA Loading Unet LoRA Prompt: A fresh ink <s0><s1> tattoo txt2img mode 0%| | 0/18 [00:00<?, ?it/s] 6%|▌ | 1/18 [00:00<00:04, 3.72it/s] 11%|█ | 2/18 [00:00<00:04, 3.69it/s] 17%|█▋ | 3/18 [00:00<00:04, 3.69it/s] 22%|██▏ | 4/18 [00:01<00:03, 3.68it/s] 28%|██▊ | 5/18 [00:01<00:03, 3.69it/s] 33%|███▎ | 6/18 [00:01<00:03, 3.69it/s] 39%|███▉ | 7/18 [00:01<00:02, 3.68it/s] 44%|████▍ | 8/18 [00:02<00:02, 3.68it/s] 50%|█████ | 9/18 [00:02<00:02, 3.68it/s] 56%|█████▌ | 10/18 [00:02<00:02, 3.69it/s] 61%|██████ | 11/18 [00:02<00:01, 3.69it/s] 67%|██████▋ | 12/18 [00:03<00:01, 3.69it/s] 72%|███████▏ | 13/18 [00:03<00:01, 3.69it/s] 78%|███████▊ | 14/18 [00:03<00:01, 3.69it/s] 83%|████████▎ | 15/18 [00:04<00:00, 3.69it/s] 89%|████████▉ | 16/18 [00:04<00:00, 3.69it/s] 94%|█████████▍| 17/18 [00:04<00:00, 3.69it/s] 100%|██████████| 18/18 [00:04<00:00, 3.69it/s] 100%|██████████| 18/18 [00:04<00:00, 3.69it/s] 0%| | 0/3 [00:00<?, ?it/s] 33%|███▎ | 1/3 [00:00<00:00, 4.31it/s] 67%|██████▋ | 2/3 [00:00<00:00, 4.27it/s] 100%|██████████| 3/3 [00:00<00:00, 4.27it/s] 100%|██████████| 3/3 [00:00<00:00, 4.28it/s]
Prediction
fofr/sdxl-fresh-ink:8515c238222fa529763ec99b4ba1fa9d32ab5d6ebc82b4281de99e4dbdcec943IDqky3velb5q5mrl6vgadlzysw6eStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- A fresh ink black TOK tattoo of Super Mario
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.6
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.9
- negative_prompt
- perfect skin, ugly, broken, distorted
- prompt_strength
- 0.8
- num_inference_steps
- 25
{ "width": 1024, "height": 1024, "prompt": "A fresh ink black TOK tattoo of Super Mario", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": false, "high_noise_frac": 0.9, "negative_prompt": "perfect skin, ugly, broken, distorted", "prompt_strength": 0.8, "num_inference_steps": 25 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run fofr/sdxl-fresh-ink using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "fofr/sdxl-fresh-ink:8515c238222fa529763ec99b4ba1fa9d32ab5d6ebc82b4281de99e4dbdcec943", { input: { width: 1024, height: 1024, prompt: "A fresh ink black TOK tattoo of Super Mario", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.6, num_outputs: 1, guidance_scale: 7.5, apply_watermark: false, high_noise_frac: 0.9, negative_prompt: "perfect skin, ugly, broken, distorted", prompt_strength: 0.8, num_inference_steps: 25 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run fofr/sdxl-fresh-ink using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "fofr/sdxl-fresh-ink:8515c238222fa529763ec99b4ba1fa9d32ab5d6ebc82b4281de99e4dbdcec943", input={ "width": 1024, "height": 1024, "prompt": "A fresh ink black TOK tattoo of Super Mario", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": False, "high_noise_frac": 0.9, "negative_prompt": "perfect skin, ugly, broken, distorted", "prompt_strength": 0.8, "num_inference_steps": 25 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run fofr/sdxl-fresh-ink using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "8515c238222fa529763ec99b4ba1fa9d32ab5d6ebc82b4281de99e4dbdcec943", "input": { "width": 1024, "height": 1024, "prompt": "A fresh ink black TOK tattoo of Super Mario", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": false, "high_noise_frac": 0.9, "negative_prompt": "perfect skin, ugly, broken, distorted", "prompt_strength": 0.8, "num_inference_steps": 25 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-01-09T16:52:37.052412Z", "created_at": "2024-01-09T16:52:16.544645Z", "data_removed": false, "error": null, "id": "qky3velb5q5mrl6vgadlzysw6e", "input": { "width": 1024, "height": 1024, "prompt": "A fresh ink black TOK tattoo of Super Mario", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": false, "high_noise_frac": 0.9, "negative_prompt": "perfect skin, ugly, broken, distorted", "prompt_strength": 0.8, "num_inference_steps": 25 }, "logs": "Using seed: 5285\nEnsuring enough disk space...\nFree disk space: 3210245767168\nDownloading weights: https://replicate.delivery/pbxt/GueLVKd75jxiXKEAmKAIV0dSwa0f7aHMYIl0itvXuFlRekVkA/trained_model.tar\n2024-01-09T16:52:27Z | INFO | [ Initiating ] dest=/src/weights-cache/9f5b12ce3d673053 minimum_chunk_size=150M url=https://replicate.delivery/pbxt/GueLVKd75jxiXKEAmKAIV0dSwa0f7aHMYIl0itvXuFlRekVkA/trained_model.tar\n2024-01-09T16:52:28Z | INFO | [ Complete ] dest=/src/weights-cache/9f5b12ce3d673053 size=\"186 MB\" total_elapsed=0.386s url=https://replicate.delivery/pbxt/GueLVKd75jxiXKEAmKAIV0dSwa0f7aHMYIl0itvXuFlRekVkA/trained_model.tar\nb''\nDownloaded weights in 0.5326061248779297 seconds\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: A fresh ink black <s0><s1> tattoo of Super Mario\ntxt2img mode\n 0%| | 0/25 [00:00<?, ?it/s]\n 4%|▍ | 1/25 [00:00<00:06, 3.64it/s]\n 8%|▊ | 2/25 [00:00<00:06, 3.64it/s]\n 12%|█▏ | 3/25 [00:00<00:06, 3.65it/s]\n 16%|█▌ | 4/25 [00:01<00:05, 3.65it/s]\n 20%|██ | 5/25 [00:01<00:05, 3.65it/s]\n 24%|██▍ | 6/25 [00:01<00:05, 3.65it/s]\n 28%|██▊ | 7/25 [00:01<00:04, 3.65it/s]\n 32%|███▏ | 8/25 [00:02<00:04, 3.64it/s]\n 36%|███▌ | 9/25 [00:02<00:04, 3.64it/s]\n 40%|████ | 10/25 [00:02<00:04, 3.64it/s]\n 44%|████▍ | 11/25 [00:03<00:03, 3.64it/s]\n 48%|████▊ | 12/25 [00:03<00:03, 3.64it/s]\n 52%|█████▏ | 13/25 [00:03<00:03, 3.64it/s]\n 56%|█████▌ | 14/25 [00:03<00:03, 3.64it/s]\n 60%|██████ | 15/25 [00:04<00:02, 3.64it/s]\n 64%|██████▍ | 16/25 [00:04<00:02, 3.63it/s]\n 68%|██████▊ | 17/25 [00:04<00:02, 3.63it/s]\n 72%|███████▏ | 18/25 [00:04<00:01, 3.63it/s]\n 76%|███████▌ | 19/25 [00:05<00:01, 3.63it/s]\n 80%|████████ | 20/25 [00:05<00:01, 3.63it/s]\n 84%|████████▍ | 21/25 [00:05<00:01, 3.63it/s]\n 88%|████████▊ | 22/25 [00:06<00:00, 3.63it/s]\n 92%|█████████▏| 23/25 [00:06<00:00, 3.63it/s]\n 96%|█████████▌| 24/25 [00:06<00:00, 3.63it/s]\n100%|██████████| 25/25 [00:06<00:00, 3.62it/s]\n100%|██████████| 25/25 [00:06<00:00, 3.63it/s]", "metrics": { "predict_time": 9.178216, "total_time": 20.507767 }, "output": [ "https://replicate.delivery/pbxt/rMNp3uWx4DI1E9qegMTpNnvWTsYxgTwTMr90kI9IwexUvyKSA/out-0.png" ], "started_at": "2024-01-09T16:52:27.874196Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/qky3velb5q5mrl6vgadlzysw6e", "cancel": "https://api.replicate.com/v1/predictions/qky3velb5q5mrl6vgadlzysw6e/cancel" }, "version": "8515c238222fa529763ec99b4ba1fa9d32ab5d6ebc82b4281de99e4dbdcec943" }
Generated inUsing seed: 5285 Ensuring enough disk space... Free disk space: 3210245767168 Downloading weights: https://replicate.delivery/pbxt/GueLVKd75jxiXKEAmKAIV0dSwa0f7aHMYIl0itvXuFlRekVkA/trained_model.tar 2024-01-09T16:52:27Z | INFO | [ Initiating ] dest=/src/weights-cache/9f5b12ce3d673053 minimum_chunk_size=150M url=https://replicate.delivery/pbxt/GueLVKd75jxiXKEAmKAIV0dSwa0f7aHMYIl0itvXuFlRekVkA/trained_model.tar 2024-01-09T16:52:28Z | INFO | [ Complete ] dest=/src/weights-cache/9f5b12ce3d673053 size="186 MB" total_elapsed=0.386s url=https://replicate.delivery/pbxt/GueLVKd75jxiXKEAmKAIV0dSwa0f7aHMYIl0itvXuFlRekVkA/trained_model.tar b'' Downloaded weights in 0.5326061248779297 seconds Loading fine-tuned model Does not have Unet. assume we are using LoRA Loading Unet LoRA Prompt: A fresh ink black <s0><s1> tattoo of Super Mario txt2img mode 0%| | 0/25 [00:00<?, ?it/s] 4%|▍ | 1/25 [00:00<00:06, 3.64it/s] 8%|▊ | 2/25 [00:00<00:06, 3.64it/s] 12%|█▏ | 3/25 [00:00<00:06, 3.65it/s] 16%|█▌ | 4/25 [00:01<00:05, 3.65it/s] 20%|██ | 5/25 [00:01<00:05, 3.65it/s] 24%|██▍ | 6/25 [00:01<00:05, 3.65it/s] 28%|██▊ | 7/25 [00:01<00:04, 3.65it/s] 32%|███▏ | 8/25 [00:02<00:04, 3.64it/s] 36%|███▌ | 9/25 [00:02<00:04, 3.64it/s] 40%|████ | 10/25 [00:02<00:04, 3.64it/s] 44%|████▍ | 11/25 [00:03<00:03, 3.64it/s] 48%|████▊ | 12/25 [00:03<00:03, 3.64it/s] 52%|█████▏ | 13/25 [00:03<00:03, 3.64it/s] 56%|█████▌ | 14/25 [00:03<00:03, 3.64it/s] 60%|██████ | 15/25 [00:04<00:02, 3.64it/s] 64%|██████▍ | 16/25 [00:04<00:02, 3.63it/s] 68%|██████▊ | 17/25 [00:04<00:02, 3.63it/s] 72%|███████▏ | 18/25 [00:04<00:01, 3.63it/s] 76%|███████▌ | 19/25 [00:05<00:01, 3.63it/s] 80%|████████ | 20/25 [00:05<00:01, 3.63it/s] 84%|████████▍ | 21/25 [00:05<00:01, 3.63it/s] 88%|████████▊ | 22/25 [00:06<00:00, 3.63it/s] 92%|█████████▏| 23/25 [00:06<00:00, 3.63it/s] 96%|█████████▌| 24/25 [00:06<00:00, 3.63it/s] 100%|██████████| 25/25 [00:06<00:00, 3.62it/s] 100%|██████████| 25/25 [00:06<00:00, 3.63it/s]
Want to make some of these yourself?
Run this model