Readme
This model doesn't have a readme.
SDXL fine-tune of Star Trek Next Generation interiors
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variableexport REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run fofr/sdxl-tng-interior using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"fofr/sdxl-tng-interior:45f1d0cf3445f54d4b19a2a03e53b15abd7237ea72e2fb4824b193ffa429e31f",
{
input: {
width: 1152,
height: 768,
prompt: "A photo in the style of TOK, interior, house - sustainable, minimalist, organic, light-filled, dynamic, efficient, autonomous, connected, harmonious, innovative, detailed, 8k, high resolution, sharp focus",
refine: "expert_ensemble_refiner",
scheduler: "K_EULER",
lora_scale: 0.85,
num_outputs: 1,
guidance_scale: 7.5,
apply_watermark: false,
high_noise_frac: 0.95,
negative_prompt: "low resolution, blurred, soft, jpeg artefacts, broken, distorted, ugly, disfigured",
prompt_strength: 0.8,
num_inference_steps: 50
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variableexport REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run fofr/sdxl-tng-interior using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"fofr/sdxl-tng-interior:45f1d0cf3445f54d4b19a2a03e53b15abd7237ea72e2fb4824b193ffa429e31f",
input={
"width": 1152,
"height": 768,
"prompt": "A photo in the style of TOK, interior, house - sustainable, minimalist, organic, light-filled, dynamic, efficient, autonomous, connected, harmonious, innovative, detailed, 8k, high resolution, sharp focus",
"refine": "expert_ensemble_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.85,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": False,
"high_noise_frac": 0.95,
"negative_prompt": "low resolution, blurred, soft, jpeg artefacts, broken, distorted, ugly, disfigured",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variableexport REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run fofr/sdxl-tng-interior using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "45f1d0cf3445f54d4b19a2a03e53b15abd7237ea72e2fb4824b193ffa429e31f",
"input": {
"width": 1152,
"height": 768,
"prompt": "A photo in the style of TOK, interior, house - sustainable, minimalist, organic, light-filled, dynamic, efficient, autonomous, connected, harmonious, innovative, detailed, 8k, high resolution, sharp focus",
"refine": "expert_ensemble_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.85,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": false,
"high_noise_frac": 0.95,
"negative_prompt": "low resolution, blurred, soft, jpeg artefacts, broken, distorted, ugly, disfigured",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Pull and run fofr/sdxl-tng-interior using Cog (this will download the full model and run it in your local environment):
cog predict r8.im/fofr/sdxl-tng-interior@sha256:45f1d0cf3445f54d4b19a2a03e53b15abd7237ea72e2fb4824b193ffa429e31f \
-i 'width=1152' \
-i 'height=768' \
-i 'prompt="A photo in the style of TOK, interior, house - sustainable, minimalist, organic, light-filled, dynamic, efficient, autonomous, connected, harmonious, innovative, detailed, 8k, high resolution, sharp focus"' \
-i 'refine="expert_ensemble_refiner"' \
-i 'scheduler="K_EULER"' \
-i 'lora_scale=0.85' \
-i 'num_outputs=1' \
-i 'guidance_scale=7.5' \
-i 'apply_watermark=false' \
-i 'high_noise_frac=0.95' \
-i 'negative_prompt="low resolution, blurred, soft, jpeg artefacts, broken, distorted, ugly, disfigured"' \
-i 'prompt_strength=0.8' \
-i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Pull and run fofr/sdxl-tng-interior using Docker (this will download the full model and run it in your local environment):
docker run -d -p 5000:5000 --gpus=all r8.im/fofr/sdxl-tng-interior@sha256:45f1d0cf3445f54d4b19a2a03e53b15abd7237ea72e2fb4824b193ffa429e31f
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 1152, "height": 768, "prompt": "A photo in the style of TOK, interior, house - sustainable, minimalist, organic, light-filled, dynamic, efficient, autonomous, connected, harmonious, innovative, detailed, 8k, high resolution, sharp focus", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.85, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": false, "high_noise_frac": 0.95, "negative_prompt": "low resolution, blurred, soft, jpeg artefacts, broken, distorted, ugly, disfigured", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
Add a payment method to run this model.
Each run costs approximately $0.045. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2023-08-27T21:03:50.413559Z",
"created_at": "2023-08-27T21:03:37.264183Z",
"data_removed": false,
"error": null,
"id": "3orytllbjdnb36rlgrbfhmj4de",
"input": {
"width": 1152,
"height": 768,
"prompt": "A photo in the style of TOK, interior, house - sustainable, minimalist, organic, light-filled, dynamic, efficient, autonomous, connected, harmonious, innovative, detailed, 8k, high resolution, sharp focus",
"refine": "expert_ensemble_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.85,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": false,
"high_noise_frac": 0.95,
"negative_prompt": "low resolution, blurred, soft, jpeg artefacts, broken, distorted, ugly, disfigured",
"prompt_strength": 0.8,
"num_inference_steps": 50
},
"logs": "Using seed: 14896\nPrompt: A photo in the style of <s0><s1>, interior, house - sustainable, minimalist, organic, light-filled, dynamic, efficient, autonomous, connected, harmonious, innovative, detailed, 8k, high resolution, sharp focus\ntxt2img mode\n 0%| | 0/47 [00:00<?, ?it/s]\n 2%|▏ | 1/47 [00:00<00:10, 4.35it/s]\n 4%|▍ | 2/47 [00:00<00:10, 4.34it/s]\n 6%|▋ | 3/47 [00:00<00:10, 4.34it/s]\n 9%|▊ | 4/47 [00:00<00:09, 4.34it/s]\n 11%|█ | 5/47 [00:01<00:09, 4.33it/s]\n 13%|█▎ | 6/47 [00:01<00:09, 4.33it/s]\n 15%|█▍ | 7/47 [00:01<00:09, 4.33it/s]\n 17%|█▋ | 8/47 [00:01<00:09, 4.33it/s]\n 19%|█▉ | 9/47 [00:02<00:08, 4.33it/s]\n 21%|██▏ | 10/47 [00:02<00:08, 4.33it/s]\n 23%|██▎ | 11/47 [00:02<00:08, 4.32it/s]\n 26%|██▌ | 12/47 [00:02<00:08, 4.33it/s]\n 28%|██▊ | 13/47 [00:03<00:07, 4.32it/s]\n 30%|██▉ | 14/47 [00:03<00:07, 4.32it/s]\n 32%|███▏ | 15/47 [00:03<00:07, 4.32it/s]\n 34%|███▍ | 16/47 [00:03<00:07, 4.33it/s]\n 36%|███▌ | 17/47 [00:03<00:06, 4.33it/s]\n 38%|███▊ | 18/47 [00:04<00:06, 4.32it/s]\n 40%|████ | 19/47 [00:04<00:06, 4.32it/s]\n 43%|████▎ | 20/47 [00:04<00:06, 4.32it/s]\n 45%|████▍ | 21/47 [00:04<00:06, 4.32it/s]\n 47%|████▋ | 22/47 [00:05<00:05, 4.32it/s]\n 49%|████▉ | 23/47 [00:05<00:05, 4.32it/s]\n 51%|█████ | 24/47 [00:05<00:05, 4.32it/s]\n 53%|█████▎ | 25/47 [00:05<00:05, 4.31it/s]\n 55%|█████▌ | 26/47 [00:06<00:04, 4.32it/s]\n 57%|█████▋ | 27/47 [00:06<00:04, 4.31it/s]\n 60%|█████▉ | 28/47 [00:06<00:04, 4.31it/s]\n 62%|██████▏ | 29/47 [00:06<00:04, 4.31it/s]\n 64%|██████▍ | 30/47 [00:06<00:03, 4.31it/s]\n 66%|██████▌ | 31/47 [00:07<00:03, 4.31it/s]\n 68%|██████▊ | 32/47 [00:07<00:03, 4.31it/s]\n 70%|███████ | 33/47 [00:07<00:03, 4.31it/s]\n 72%|███████▏ | 34/47 [00:07<00:03, 4.31it/s]\n 74%|███████▍ | 35/47 [00:08<00:02, 4.31it/s]\n 77%|███████▋ | 36/47 [00:08<00:02, 4.31it/s]\n 79%|███████▊ | 37/47 [00:08<00:02, 4.31it/s]\n 81%|████████ | 38/47 [00:08<00:02, 4.31it/s]\n 83%|████████▎ | 39/47 [00:09<00:01, 4.31it/s]\n 85%|████████▌ | 40/47 [00:09<00:01, 4.31it/s]\n 87%|████████▋ | 41/47 [00:09<00:01, 4.31it/s]\n 89%|████████▉ | 42/47 [00:09<00:01, 4.30it/s]\n 91%|█████████▏| 43/47 [00:09<00:00, 4.30it/s]\n 94%|█████████▎| 44/47 [00:10<00:00, 4.30it/s]\n 96%|█████████▌| 45/47 [00:10<00:00, 4.30it/s]\n 98%|█████████▊| 46/47 [00:10<00:00, 4.30it/s]\n100%|██████████| 47/47 [00:10<00:00, 4.30it/s]\n100%|██████████| 47/47 [00:10<00:00, 4.32it/s]\n 0%| | 0/3 [00:00<?, ?it/s]\n 33%|███▎ | 1/3 [00:00<00:00, 5.60it/s]\n 67%|██████▋ | 2/3 [00:00<00:00, 5.56it/s]\n100%|██████████| 3/3 [00:00<00:00, 5.56it/s]\n100%|██████████| 3/3 [00:00<00:00, 5.56it/s]",
"metrics": {
"predict_time": 13.143767,
"total_time": 13.149376
},
"output": [
"https://replicate.delivery/pbxt/CGxE1DgG675SMNPUH8NAuTdHkEh3Cw3l78ze4XbR52f1wWeiA/out-0.png"
],
"started_at": "2023-08-27T21:03:37.269792Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/3orytllbjdnb36rlgrbfhmj4de",
"cancel": "https://api.replicate.com/v1/predictions/3orytllbjdnb36rlgrbfhmj4de/cancel"
},
"version": "45f1d0cf3445f54d4b19a2a03e53b15abd7237ea72e2fb4824b193ffa429e31f"
}
Using seed: 14896
Prompt: A photo in the style of <s0><s1>, interior, house - sustainable, minimalist, organic, light-filled, dynamic, efficient, autonomous, connected, harmonious, innovative, detailed, 8k, high resolution, sharp focus
txt2img mode
0%| | 0/47 [00:00<?, ?it/s]
2%|▏ | 1/47 [00:00<00:10, 4.35it/s]
4%|▍ | 2/47 [00:00<00:10, 4.34it/s]
6%|▋ | 3/47 [00:00<00:10, 4.34it/s]
9%|▊ | 4/47 [00:00<00:09, 4.34it/s]
11%|█ | 5/47 [00:01<00:09, 4.33it/s]
13%|█▎ | 6/47 [00:01<00:09, 4.33it/s]
15%|█▍ | 7/47 [00:01<00:09, 4.33it/s]
17%|█▋ | 8/47 [00:01<00:09, 4.33it/s]
19%|█▉ | 9/47 [00:02<00:08, 4.33it/s]
21%|██▏ | 10/47 [00:02<00:08, 4.33it/s]
23%|██▎ | 11/47 [00:02<00:08, 4.32it/s]
26%|██▌ | 12/47 [00:02<00:08, 4.33it/s]
28%|██▊ | 13/47 [00:03<00:07, 4.32it/s]
30%|██▉ | 14/47 [00:03<00:07, 4.32it/s]
32%|███▏ | 15/47 [00:03<00:07, 4.32it/s]
34%|███▍ | 16/47 [00:03<00:07, 4.33it/s]
36%|███▌ | 17/47 [00:03<00:06, 4.33it/s]
38%|███▊ | 18/47 [00:04<00:06, 4.32it/s]
40%|████ | 19/47 [00:04<00:06, 4.32it/s]
43%|████▎ | 20/47 [00:04<00:06, 4.32it/s]
45%|████▍ | 21/47 [00:04<00:06, 4.32it/s]
47%|████▋ | 22/47 [00:05<00:05, 4.32it/s]
49%|████▉ | 23/47 [00:05<00:05, 4.32it/s]
51%|█████ | 24/47 [00:05<00:05, 4.32it/s]
53%|█████▎ | 25/47 [00:05<00:05, 4.31it/s]
55%|█████▌ | 26/47 [00:06<00:04, 4.32it/s]
57%|█████▋ | 27/47 [00:06<00:04, 4.31it/s]
60%|█████▉ | 28/47 [00:06<00:04, 4.31it/s]
62%|██████▏ | 29/47 [00:06<00:04, 4.31it/s]
64%|██████▍ | 30/47 [00:06<00:03, 4.31it/s]
66%|██████▌ | 31/47 [00:07<00:03, 4.31it/s]
68%|██████▊ | 32/47 [00:07<00:03, 4.31it/s]
70%|███████ | 33/47 [00:07<00:03, 4.31it/s]
72%|███████▏ | 34/47 [00:07<00:03, 4.31it/s]
74%|███████▍ | 35/47 [00:08<00:02, 4.31it/s]
77%|███████▋ | 36/47 [00:08<00:02, 4.31it/s]
79%|███████▊ | 37/47 [00:08<00:02, 4.31it/s]
81%|████████ | 38/47 [00:08<00:02, 4.31it/s]
83%|████████▎ | 39/47 [00:09<00:01, 4.31it/s]
85%|████████▌ | 40/47 [00:09<00:01, 4.31it/s]
87%|████████▋ | 41/47 [00:09<00:01, 4.31it/s]
89%|████████▉ | 42/47 [00:09<00:01, 4.30it/s]
91%|█████████▏| 43/47 [00:09<00:00, 4.30it/s]
94%|█████████▎| 44/47 [00:10<00:00, 4.30it/s]
96%|█████████▌| 45/47 [00:10<00:00, 4.30it/s]
98%|█████████▊| 46/47 [00:10<00:00, 4.30it/s]
100%|██████████| 47/47 [00:10<00:00, 4.30it/s]
100%|██████████| 47/47 [00:10<00:00, 4.32it/s]
0%| | 0/3 [00:00<?, ?it/s]
33%|███▎ | 1/3 [00:00<00:00, 5.60it/s]
67%|██████▋ | 2/3 [00:00<00:00, 5.56it/s]
100%|██████████| 3/3 [00:00<00:00, 5.56it/s]
100%|██████████| 3/3 [00:00<00:00, 5.56it/s]
This model costs approximately $0.045 to run on Replicate, or 22 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.
This model runs on Nvidia L40S GPU hardware. Predictions typically complete within 47 seconds. The predict time for this model varies significantly based on the inputs.
This model doesn't have a readme.
This model is cold. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
Using seed: 14896
Prompt: A photo in the style of <s0><s1>, interior, house - sustainable, minimalist, organic, light-filled, dynamic, efficient, autonomous, connected, harmonious, innovative, detailed, 8k, high resolution, sharp focus
txt2img mode
0%| | 0/47 [00:00<?, ?it/s]
2%|▏ | 1/47 [00:00<00:10, 4.35it/s]
4%|▍ | 2/47 [00:00<00:10, 4.34it/s]
6%|▋ | 3/47 [00:00<00:10, 4.34it/s]
9%|▊ | 4/47 [00:00<00:09, 4.34it/s]
11%|█ | 5/47 [00:01<00:09, 4.33it/s]
13%|█▎ | 6/47 [00:01<00:09, 4.33it/s]
15%|█▍ | 7/47 [00:01<00:09, 4.33it/s]
17%|█▋ | 8/47 [00:01<00:09, 4.33it/s]
19%|█▉ | 9/47 [00:02<00:08, 4.33it/s]
21%|██▏ | 10/47 [00:02<00:08, 4.33it/s]
23%|██▎ | 11/47 [00:02<00:08, 4.32it/s]
26%|██▌ | 12/47 [00:02<00:08, 4.33it/s]
28%|██▊ | 13/47 [00:03<00:07, 4.32it/s]
30%|██▉ | 14/47 [00:03<00:07, 4.32it/s]
32%|███▏ | 15/47 [00:03<00:07, 4.32it/s]
34%|███▍ | 16/47 [00:03<00:07, 4.33it/s]
36%|███▌ | 17/47 [00:03<00:06, 4.33it/s]
38%|███▊ | 18/47 [00:04<00:06, 4.32it/s]
40%|████ | 19/47 [00:04<00:06, 4.32it/s]
43%|████▎ | 20/47 [00:04<00:06, 4.32it/s]
45%|████▍ | 21/47 [00:04<00:06, 4.32it/s]
47%|████▋ | 22/47 [00:05<00:05, 4.32it/s]
49%|████▉ | 23/47 [00:05<00:05, 4.32it/s]
51%|█████ | 24/47 [00:05<00:05, 4.32it/s]
53%|█████▎ | 25/47 [00:05<00:05, 4.31it/s]
55%|█████▌ | 26/47 [00:06<00:04, 4.32it/s]
57%|█████▋ | 27/47 [00:06<00:04, 4.31it/s]
60%|█████▉ | 28/47 [00:06<00:04, 4.31it/s]
62%|██████▏ | 29/47 [00:06<00:04, 4.31it/s]
64%|██████▍ | 30/47 [00:06<00:03, 4.31it/s]
66%|██████▌ | 31/47 [00:07<00:03, 4.31it/s]
68%|██████▊ | 32/47 [00:07<00:03, 4.31it/s]
70%|███████ | 33/47 [00:07<00:03, 4.31it/s]
72%|███████▏ | 34/47 [00:07<00:03, 4.31it/s]
74%|███████▍ | 35/47 [00:08<00:02, 4.31it/s]
77%|███████▋ | 36/47 [00:08<00:02, 4.31it/s]
79%|███████▊ | 37/47 [00:08<00:02, 4.31it/s]
81%|████████ | 38/47 [00:08<00:02, 4.31it/s]
83%|████████▎ | 39/47 [00:09<00:01, 4.31it/s]
85%|████████▌ | 40/47 [00:09<00:01, 4.31it/s]
87%|████████▋ | 41/47 [00:09<00:01, 4.31it/s]
89%|████████▉ | 42/47 [00:09<00:01, 4.30it/s]
91%|█████████▏| 43/47 [00:09<00:00, 4.30it/s]
94%|█████████▎| 44/47 [00:10<00:00, 4.30it/s]
96%|█████████▌| 45/47 [00:10<00:00, 4.30it/s]
98%|█████████▊| 46/47 [00:10<00:00, 4.30it/s]
100%|██████████| 47/47 [00:10<00:00, 4.30it/s]
100%|██████████| 47/47 [00:10<00:00, 4.32it/s]
0%| | 0/3 [00:00<?, ?it/s]
33%|███▎ | 1/3 [00:00<00:00, 5.60it/s]
67%|██████▋ | 2/3 [00:00<00:00, 5.56it/s]
100%|██████████| 3/3 [00:00<00:00, 5.56it/s]
100%|██████████| 3/3 [00:00<00:00, 5.56it/s]