ghostofpokemon
/
sdxl-family-guy-faces
- Public
- 135 runs
-
L40S
- SDXL fine-tune
Prediction
ghostofpokemon/sdxl-family-guy-faces:b8d8c768IDbntaowdbyghqymgyxxjqdmgbkqStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 576
- prompt
- a baby alien in the driveway in the style of Family Guy, clean, simple, minimal
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.6
- num_outputs
- 2
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- ugly, broken
- prompt_strength
- 0.8
- num_inference_steps
- 50
{ "width": 1024, "height": 576, "prompt": "a baby alien in the driveway in the style of Family Guy, clean, simple, minimal", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 2, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "ugly, broken ", "prompt_strength": 0.8, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run ghostofpokemon/sdxl-family-guy-faces using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "ghostofpokemon/sdxl-family-guy-faces:b8d8c768bc60dc86a85b0af9ae25c7d6f09716649d98aab2f0c75ab7bf1719b9", { input: { width: 1024, height: 576, prompt: "a baby alien in the driveway in the style of Family Guy, clean, simple, minimal", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.6, num_outputs: 2, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "ugly, broken ", prompt_strength: 0.8, num_inference_steps: 50 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run ghostofpokemon/sdxl-family-guy-faces using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "ghostofpokemon/sdxl-family-guy-faces:b8d8c768bc60dc86a85b0af9ae25c7d6f09716649d98aab2f0c75ab7bf1719b9", input={ "width": 1024, "height": 576, "prompt": "a baby alien in the driveway in the style of Family Guy, clean, simple, minimal", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 2, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "ugly, broken ", "prompt_strength": 0.8, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run ghostofpokemon/sdxl-family-guy-faces using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "b8d8c768bc60dc86a85b0af9ae25c7d6f09716649d98aab2f0c75ab7bf1719b9", "input": { "width": 1024, "height": 576, "prompt": "a baby alien in the driveway in the style of Family Guy, clean, simple, minimal", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 2, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "ugly, broken ", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/ghostofpokemon/sdxl-family-guy-faces@sha256:b8d8c768bc60dc86a85b0af9ae25c7d6f09716649d98aab2f0c75ab7bf1719b9 \ -i 'width=1024' \ -i 'height=576' \ -i 'prompt="a baby alien in the driveway in the style of Family Guy, clean, simple, minimal"' \ -i 'refine="no_refiner"' \ -i 'scheduler="K_EULER"' \ -i 'lora_scale=0.6' \ -i 'num_outputs=2' \ -i 'guidance_scale=7.5' \ -i 'apply_watermark=true' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt="ugly, broken "' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/ghostofpokemon/sdxl-family-guy-faces@sha256:b8d8c768bc60dc86a85b0af9ae25c7d6f09716649d98aab2f0c75ab7bf1719b9
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 1024, "height": 576, "prompt": "a baby alien in the driveway in the style of Family Guy, clean, simple, minimal", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 2, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "ugly, broken ", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-11-14T01:28:04.113025Z", "created_at": "2023-11-14T01:27:40.964597Z", "data_removed": false, "error": null, "id": "bntaowdbyghqymgyxxjqdmgbkq", "input": { "width": 1024, "height": 576, "prompt": "a baby alien in the driveway in the style of Family Guy, clean, simple, minimal", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 2, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "ugly, broken ", "prompt_strength": 0.8, "num_inference_steps": 50 }, "logs": "Using seed: 47276\nEnsuring enough disk space...\nFree disk space: 1408204800000\nDownloading weights: https://replicate.delivery/pbxt/geffzE5VAybnVIoWnvOwW1oskhilZptGHuztp9rQCfesi2APC/trained_model.tar\nb'Downloaded 186 MB bytes in 2.007s (93 MB/s)\\nExtracted 186 MB in 0.053s (3.5 GB/s)\\n'\nDownloaded weights in 2.231668472290039 seconds\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: a baby alien in the driveway in the style of <s0><s1>, clean, simple, minimal\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:15, 3.18it/s]\n 4%|▍ | 2/50 [00:00<00:14, 3.25it/s]\n 6%|▌ | 3/50 [00:00<00:14, 3.27it/s]\n 8%|▊ | 4/50 [00:01<00:14, 3.28it/s]\n 10%|█ | 5/50 [00:01<00:13, 3.29it/s]\n 12%|█▏ | 6/50 [00:01<00:13, 3.29it/s]\n 14%|█▍ | 7/50 [00:02<00:13, 3.29it/s]\n 16%|█▌ | 8/50 [00:02<00:12, 3.29it/s]\n 18%|█▊ | 9/50 [00:02<00:12, 3.29it/s]\n 20%|██ | 10/50 [00:03<00:12, 3.30it/s]\n 22%|██▏ | 11/50 [00:03<00:11, 3.30it/s]\n 24%|██▍ | 12/50 [00:03<00:11, 3.31it/s]\n 26%|██▌ | 13/50 [00:03<00:11, 3.31it/s]\n 28%|██▊ | 14/50 [00:04<00:10, 3.31it/s]\n 30%|███ | 15/50 [00:04<00:10, 3.31it/s]\n 32%|███▏ | 16/50 [00:04<00:10, 3.31it/s]\n 34%|███▍ | 17/50 [00:05<00:09, 3.31it/s]\n 36%|███▌ | 18/50 [00:05<00:09, 3.31it/s]\n 38%|███▊ | 19/50 [00:05<00:09, 3.31it/s]\n 40%|████ | 20/50 [00:06<00:09, 3.31it/s]\n 42%|████▏ | 21/50 [00:06<00:08, 3.30it/s]\n 44%|████▍ | 22/50 [00:06<00:08, 3.31it/s]\n 46%|████▌ | 23/50 [00:06<00:08, 3.31it/s]\n 48%|████▊ | 24/50 [00:07<00:07, 3.31it/s]\n 50%|█████ | 25/50 [00:07<00:07, 3.30it/s]\n 52%|█████▏ | 26/50 [00:07<00:07, 3.30it/s]\n 54%|█████▍ | 27/50 [00:08<00:06, 3.30it/s]\n 56%|█████▌ | 28/50 [00:08<00:06, 3.30it/s]\n 58%|█████▊ | 29/50 [00:08<00:06, 3.30it/s]\n 60%|██████ | 30/50 [00:09<00:06, 3.30it/s]\n 62%|██████▏ | 31/50 [00:09<00:05, 3.30it/s]\n 64%|██████▍ | 32/50 [00:09<00:05, 3.30it/s]\n 66%|██████▌ | 33/50 [00:10<00:05, 3.30it/s]\n 68%|██████▊ | 34/50 [00:10<00:04, 3.30it/s]\n 70%|███████ | 35/50 [00:10<00:04, 3.30it/s]\n 72%|███████▏ | 36/50 [00:10<00:04, 3.30it/s]\n 74%|███████▍ | 37/50 [00:11<00:03, 3.30it/s]\n 76%|███████▌ | 38/50 [00:11<00:03, 3.30it/s]\n 78%|███████▊ | 39/50 [00:11<00:03, 3.30it/s]\n 80%|████████ | 40/50 [00:12<00:03, 3.30it/s]\n 82%|████████▏ | 41/50 [00:12<00:02, 3.30it/s]\n 84%|████████▍ | 42/50 [00:12<00:02, 3.30it/s]\n 86%|████████▌ | 43/50 [00:13<00:02, 3.30it/s]\n 88%|████████▊ | 44/50 [00:13<00:01, 3.30it/s]\n 90%|█████████ | 45/50 [00:13<00:01, 3.30it/s]\n 92%|█████████▏| 46/50 [00:13<00:01, 3.29it/s]\n 94%|█████████▍| 47/50 [00:14<00:00, 3.30it/s]\n 96%|█████████▌| 48/50 [00:14<00:00, 3.29it/s]\n 98%|█████████▊| 49/50 [00:14<00:00, 3.30it/s]\n100%|██████████| 50/50 [00:15<00:00, 3.29it/s]\n100%|██████████| 50/50 [00:15<00:00, 3.30it/s]", "metrics": { "predict_time": 19.400534, "total_time": 23.148428 }, "output": [ "https://replicate.delivery/pbxt/VrIpXAkDxEorIB01eeCek4KP5jMh5F0ujfaZVRXPpDiMyfAPC/out-0.png", "https://replicate.delivery/pbxt/zMAPgi9reUxYISj0HGMPnQFq41rc16C8NVxOSRyG9rlReH4RA/out-1.png" ], "started_at": "2023-11-14T01:27:44.712491Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/bntaowdbyghqymgyxxjqdmgbkq", "cancel": "https://api.replicate.com/v1/predictions/bntaowdbyghqymgyxxjqdmgbkq/cancel" }, "version": "5d4deed566031645b1e2bc22f1282fcfcbffa08076ce41826aa903ae2fa52cc7" }
Generated inUsing seed: 47276 Ensuring enough disk space... Free disk space: 1408204800000 Downloading weights: https://replicate.delivery/pbxt/geffzE5VAybnVIoWnvOwW1oskhilZptGHuztp9rQCfesi2APC/trained_model.tar b'Downloaded 186 MB bytes in 2.007s (93 MB/s)\nExtracted 186 MB in 0.053s (3.5 GB/s)\n' Downloaded weights in 2.231668472290039 seconds Loading fine-tuned model Does not have Unet. assume we are using LoRA Loading Unet LoRA Prompt: a baby alien in the driveway in the style of <s0><s1>, clean, simple, minimal txt2img mode 0%| | 0/50 [00:00<?, ?it/s] 2%|▏ | 1/50 [00:00<00:15, 3.18it/s] 4%|▍ | 2/50 [00:00<00:14, 3.25it/s] 6%|▌ | 3/50 [00:00<00:14, 3.27it/s] 8%|▊ | 4/50 [00:01<00:14, 3.28it/s] 10%|█ | 5/50 [00:01<00:13, 3.29it/s] 12%|█▏ | 6/50 [00:01<00:13, 3.29it/s] 14%|█▍ | 7/50 [00:02<00:13, 3.29it/s] 16%|█▌ | 8/50 [00:02<00:12, 3.29it/s] 18%|█▊ | 9/50 [00:02<00:12, 3.29it/s] 20%|██ | 10/50 [00:03<00:12, 3.30it/s] 22%|██▏ | 11/50 [00:03<00:11, 3.30it/s] 24%|██▍ | 12/50 [00:03<00:11, 3.31it/s] 26%|██▌ | 13/50 [00:03<00:11, 3.31it/s] 28%|██▊ | 14/50 [00:04<00:10, 3.31it/s] 30%|███ | 15/50 [00:04<00:10, 3.31it/s] 32%|███▏ | 16/50 [00:04<00:10, 3.31it/s] 34%|███▍ | 17/50 [00:05<00:09, 3.31it/s] 36%|███▌ | 18/50 [00:05<00:09, 3.31it/s] 38%|███▊ | 19/50 [00:05<00:09, 3.31it/s] 40%|████ | 20/50 [00:06<00:09, 3.31it/s] 42%|████▏ | 21/50 [00:06<00:08, 3.30it/s] 44%|████▍ | 22/50 [00:06<00:08, 3.31it/s] 46%|████▌ | 23/50 [00:06<00:08, 3.31it/s] 48%|████▊ | 24/50 [00:07<00:07, 3.31it/s] 50%|█████ | 25/50 [00:07<00:07, 3.30it/s] 52%|█████▏ | 26/50 [00:07<00:07, 3.30it/s] 54%|█████▍ | 27/50 [00:08<00:06, 3.30it/s] 56%|█████▌ | 28/50 [00:08<00:06, 3.30it/s] 58%|█████▊ | 29/50 [00:08<00:06, 3.30it/s] 60%|██████ | 30/50 [00:09<00:06, 3.30it/s] 62%|██████▏ | 31/50 [00:09<00:05, 3.30it/s] 64%|██████▍ | 32/50 [00:09<00:05, 3.30it/s] 66%|██████▌ | 33/50 [00:10<00:05, 3.30it/s] 68%|██████▊ | 34/50 [00:10<00:04, 3.30it/s] 70%|███████ | 35/50 [00:10<00:04, 3.30it/s] 72%|███████▏ | 36/50 [00:10<00:04, 3.30it/s] 74%|███████▍ | 37/50 [00:11<00:03, 3.30it/s] 76%|███████▌ | 38/50 [00:11<00:03, 3.30it/s] 78%|███████▊ | 39/50 [00:11<00:03, 3.30it/s] 80%|████████ | 40/50 [00:12<00:03, 3.30it/s] 82%|████████▏ | 41/50 [00:12<00:02, 3.30it/s] 84%|████████▍ | 42/50 [00:12<00:02, 3.30it/s] 86%|████████▌ | 43/50 [00:13<00:02, 3.30it/s] 88%|████████▊ | 44/50 [00:13<00:01, 3.30it/s] 90%|█████████ | 45/50 [00:13<00:01, 3.30it/s] 92%|█████████▏| 46/50 [00:13<00:01, 3.29it/s] 94%|█████████▍| 47/50 [00:14<00:00, 3.30it/s] 96%|█████████▌| 48/50 [00:14<00:00, 3.29it/s] 98%|█████████▊| 49/50 [00:14<00:00, 3.30it/s] 100%|██████████| 50/50 [00:15<00:00, 3.29it/s] 100%|██████████| 50/50 [00:15<00:00, 3.30it/s]
Want to make some of these yourself?
Run this model