Readme
This model doesn't have a readme.
Creates stunning images of the best soccer player in the world ππ€β€οΈ
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variableexport REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run gileslerockeur/mbappe using Replicateβs API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"gileslerockeur/mbappe:b838a04a475885971f77e3a58946f1e95c1519b2d53dbd361d4f09789c4bd450",
{
input: {
width: 1024,
height: 1024,
prompt: "A photo of TOK, running on soccer field, wearing the white jersey of soccer team Real Madrid. close shot.",
refine: "expert_ensemble_refiner",
scheduler: "K_EULER",
lora_scale: 0.85,
num_outputs: 1,
guidance_scale: 7.5,
apply_watermark: true,
high_noise_frac: 0.95,
negative_prompt: "PSG\nParis Saint Germain\nDark blue jersey",
prompt_strength: 0.8,
num_inference_steps: 100
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variableexport REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run gileslerockeur/mbappe using Replicateβs API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"gileslerockeur/mbappe:b838a04a475885971f77e3a58946f1e95c1519b2d53dbd361d4f09789c4bd450",
input={
"width": 1024,
"height": 1024,
"prompt": "A photo of TOK, running on soccer field, wearing the white jersey of soccer team Real Madrid. close shot.",
"refine": "expert_ensemble_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.85,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": True,
"high_noise_frac": 0.95,
"negative_prompt": "PSG\nParis Saint Germain\nDark blue jersey",
"prompt_strength": 0.8,
"num_inference_steps": 100
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variableexport REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run gileslerockeur/mbappe using Replicateβs API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "b838a04a475885971f77e3a58946f1e95c1519b2d53dbd361d4f09789c4bd450",
"input": {
"width": 1024,
"height": 1024,
"prompt": "A photo of TOK, running on soccer field, wearing the white jersey of soccer team Real Madrid. close shot.",
"refine": "expert_ensemble_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.85,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.95,
"negative_prompt": "PSG\\nParis Saint Germain\\nDark blue jersey",
"prompt_strength": 0.8,
"num_inference_steps": 100
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicateβs HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2024-02-15T23:05:20.098382Z",
"created_at": "2024-02-15T23:04:45.230786Z",
"data_removed": false,
"error": null,
"id": "guwljetbiwrxasjy64lfyvcyhy",
"input": {
"width": 1024,
"height": 1024,
"prompt": "A photo of TOK, running on soccer field, wearing the white jersey of soccer team Real Madrid. close shot.",
"refine": "expert_ensemble_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.85,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.95,
"negative_prompt": "PSG\nParis Saint Germain\nDark blue jersey",
"prompt_strength": 0.8,
"num_inference_steps": 100
},
"logs": "Using seed: 12659\nEnsuring enough disk space...\nFree disk space: 1585451642880\nDownloading weights: https://replicate.delivery/pbxt/YDOmKBNclz5bFpPC8mKcB6zUZHLjmbArJcxNYJnMHuXHBxlE/trained_model.tar\n2024-02-15T23:04:48Z | INFO | [ Initiating ] dest=/src/weights-cache/0eda00f750189c5b minimum_chunk_size=150M url=https://replicate.delivery/pbxt/YDOmKBNclz5bFpPC8mKcB6zUZHLjmbArJcxNYJnMHuXHBxlE/trained_model.tar\n2024-02-15T23:04:49Z | INFO | [ Complete ] dest=/src/weights-cache/0eda00f750189c5b size=\"186 MB\" total_elapsed=0.646s url=https://replicate.delivery/pbxt/YDOmKBNclz5bFpPC8mKcB6zUZHLjmbArJcxNYJnMHuXHBxlE/trained_model.tar\nb''\nDownloaded weights in 0.8245742321014404 seconds\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: A photo of <s0><s1>, running on soccer field, wearing the white jersey of soccer team Real Madrid. close shot.\ntxt2img mode\n 0%| | 0/95 [00:00<?, ?it/s]\n 1%| | 1/95 [00:00<00:25, 3.69it/s]\n 2%|β | 2/95 [00:00<00:25, 3.68it/s]\n 3%|β | 3/95 [00:00<00:25, 3.68it/s]\n 4%|β | 4/95 [00:01<00:24, 3.67it/s]\n 5%|β | 5/95 [00:01<00:24, 3.67it/s]\n 6%|β | 6/95 [00:01<00:24, 3.68it/s]\n 7%|β | 7/95 [00:01<00:23, 3.68it/s]\n 8%|β | 8/95 [00:02<00:23, 3.67it/s]\n 9%|β | 9/95 [00:02<00:23, 3.67it/s]\n 11%|β | 10/95 [00:02<00:23, 3.67it/s]\n 12%|ββ | 11/95 [00:02<00:22, 3.67it/s]\n 13%|ββ | 12/95 [00:03<00:22, 3.67it/s]\n 14%|ββ | 13/95 [00:03<00:22, 3.67it/s]\n 15%|ββ | 14/95 [00:03<00:22, 3.67it/s]\n 16%|ββ | 15/95 [00:04<00:21, 3.67it/s]\n 17%|ββ | 16/95 [00:04<00:21, 3.67it/s]\n 18%|ββ | 17/95 [00:04<00:21, 3.67it/s]\n 19%|ββ | 18/95 [00:04<00:20, 3.67it/s]\n 20%|ββ | 19/95 [00:05<00:20, 3.67it/s]\n 21%|ββ | 20/95 [00:05<00:20, 3.67it/s]\n 22%|βββ | 21/95 [00:05<00:20, 3.66it/s]\n 23%|βββ | 22/95 [00:05<00:19, 3.66it/s]\n 24%|βββ | 23/95 [00:06<00:19, 3.66it/s]\n 25%|βββ | 24/95 [00:06<00:19, 3.66it/s]\n 26%|βββ | 25/95 [00:06<00:19, 3.66it/s]\n 27%|βββ | 26/95 [00:07<00:18, 3.66it/s]\n 28%|βββ | 27/95 [00:07<00:18, 3.66it/s]\n 29%|βββ | 28/95 [00:07<00:18, 3.66it/s]\n 31%|βββ | 29/95 [00:07<00:18, 3.66it/s]\n 32%|ββββ | 30/95 [00:08<00:17, 3.66it/s]\n 33%|ββββ | 31/95 [00:08<00:17, 3.65it/s]\n 34%|ββββ | 32/95 [00:08<00:17, 3.66it/s]\n 35%|ββββ | 33/95 [00:09<00:16, 3.65it/s]\n 36%|ββββ | 34/95 [00:09<00:16, 3.65it/s]\n 37%|ββββ | 35/95 [00:09<00:16, 3.65it/s]\n 38%|ββββ | 36/95 [00:09<00:16, 3.65it/s]\n 39%|ββββ | 37/95 [00:10<00:15, 3.65it/s]\n 40%|ββββ | 38/95 [00:10<00:15, 3.65it/s]\n 41%|ββββ | 39/95 [00:10<00:15, 3.65it/s]\n 42%|βββββ | 40/95 [00:10<00:15, 3.65it/s]\n 43%|βββββ | 41/95 [00:11<00:14, 3.65it/s]\n 44%|βββββ | 42/95 [00:11<00:14, 3.65it/s]\n 45%|βββββ | 43/95 [00:11<00:14, 3.65it/s]\n 46%|βββββ | 44/95 [00:12<00:13, 3.65it/s]\n 47%|βββββ | 45/95 [00:12<00:13, 3.65it/s]\n 48%|βββββ | 46/95 [00:12<00:13, 3.65it/s]\n 49%|βββββ | 47/95 [00:12<00:13, 3.65it/s]\n 51%|βββββ | 48/95 [00:13<00:12, 3.65it/s]\n 52%|ββββββ | 49/95 [00:13<00:12, 3.65it/s]\n 53%|ββββββ | 50/95 [00:13<00:12, 3.65it/s]\n 54%|ββββββ | 51/95 [00:13<00:12, 3.65it/s]\n 55%|ββββββ | 52/95 [00:14<00:11, 3.64it/s]\n 56%|ββββββ | 53/95 [00:14<00:11, 3.64it/s]\n 57%|ββββββ | 54/95 [00:14<00:11, 3.65it/s]\n 58%|ββββββ | 55/95 [00:15<00:10, 3.65it/s]\n 59%|ββββββ | 56/95 [00:15<00:10, 3.64it/s]\n 60%|ββββββ | 57/95 [00:15<00:10, 3.64it/s]\n 61%|ββββββ | 58/95 [00:15<00:10, 3.64it/s]\n 62%|βββββββ | 59/95 [00:16<00:09, 3.64it/s]\n 63%|βββββββ | 60/95 [00:16<00:09, 3.65it/s]\n 64%|βββββββ | 61/95 [00:16<00:09, 3.64it/s]\n 65%|βββββββ | 62/95 [00:16<00:09, 3.64it/s]\n 66%|βββββββ | 63/95 [00:17<00:08, 3.64it/s]\n 67%|βββββββ | 64/95 [00:17<00:08, 3.64it/s]\n 68%|βββββββ | 65/95 [00:17<00:08, 3.64it/s]\n 69%|βββββββ | 66/95 [00:18<00:07, 3.64it/s]\n 71%|βββββββ | 67/95 [00:18<00:07, 3.64it/s]\n 72%|ββββββββ | 68/95 [00:18<00:07, 3.64it/s]\n 73%|ββββββββ | 69/95 [00:18<00:07, 3.64it/s]\n 74%|ββββββββ | 70/95 [00:19<00:06, 3.64it/s]\n 75%|ββββββββ | 71/95 [00:19<00:06, 3.64it/s]\n 76%|ββββββββ | 72/95 [00:19<00:06, 3.64it/s]\n 77%|ββββββββ | 73/95 [00:19<00:06, 3.64it/s]\n 78%|ββββββββ | 74/95 [00:20<00:05, 3.64it/s]\n 79%|ββββββββ | 75/95 [00:20<00:05, 3.64it/s]\n 80%|ββββββββ | 76/95 [00:20<00:05, 3.64it/s]\n 81%|ββββββββ | 77/95 [00:21<00:04, 3.64it/s]\n 82%|βββββββββ | 78/95 [00:21<00:04, 3.63it/s]\n 83%|βββββββββ | 79/95 [00:21<00:04, 3.64it/s]\n 84%|βββββββββ | 80/95 [00:21<00:04, 3.64it/s]\n 85%|βββββββββ | 81/95 [00:22<00:03, 3.64it/s]\n 86%|βββββββββ | 82/95 [00:22<00:03, 3.64it/s]\n 87%|βββββββββ | 83/95 [00:22<00:03, 3.63it/s]\n 88%|βββββββββ | 84/95 [00:23<00:03, 3.63it/s]\n 89%|βββββββββ | 85/95 [00:23<00:02, 3.64it/s]\n 91%|βββββββββ | 86/95 [00:23<00:02, 3.64it/s]\n 92%|ββββββββββ| 87/95 [00:23<00:02, 3.64it/s]\n 93%|ββββββββββ| 88/95 [00:24<00:01, 3.64it/s]\n 94%|ββββββββββ| 89/95 [00:24<00:01, 3.64it/s]\n 95%|ββββββββββ| 90/95 [00:24<00:01, 3.64it/s]\n 96%|ββββββββββ| 91/95 [00:24<00:01, 3.64it/s]\n 97%|ββββββββββ| 92/95 [00:25<00:00, 3.64it/s]\n 98%|ββββββββββ| 93/95 [00:25<00:00, 3.64it/s]\n 99%|ββββββββββ| 94/95 [00:25<00:00, 3.64it/s]\n100%|ββββββββββ| 95/95 [00:26<00:00, 3.64it/s]\n100%|ββββββββββ| 95/95 [00:26<00:00, 3.65it/s]\n 0%| | 0/5 [00:00<?, ?it/s]\n 20%|ββ | 1/5 [00:00<00:00, 4.25it/s]\n 40%|ββββ | 2/5 [00:00<00:00, 4.22it/s]\n 60%|ββββββ | 3/5 [00:00<00:00, 4.21it/s]\n 80%|ββββββββ | 4/5 [00:00<00:00, 4.21it/s]\n100%|ββββββββββ| 5/5 [00:01<00:00, 4.20it/s]\n100%|ββββββββββ| 5/5 [00:01<00:00, 4.21it/s]",
"metrics": {
"predict_time": 31.235973,
"total_time": 34.867596
},
"output": [
"https://replicate.delivery/pbxt/OvDwcCq58YJIM5xf0JsKtlXUdrlcw9lM14q7n8AejPuuqEXSA/out-0.png"
],
"started_at": "2024-02-15T23:04:48.862409Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/guwljetbiwrxasjy64lfyvcyhy",
"cancel": "https://api.replicate.com/v1/predictions/guwljetbiwrxasjy64lfyvcyhy/cancel"
},
"version": "b838a04a475885971f77e3a58946f1e95c1519b2d53dbd361d4f09789c4bd450"
}
Using seed: 12659
Ensuring enough disk space...
Free disk space: 1585451642880
Downloading weights: https://replicate.delivery/pbxt/YDOmKBNclz5bFpPC8mKcB6zUZHLjmbArJcxNYJnMHuXHBxlE/trained_model.tar
2024-02-15T23:04:48Z | INFO | [ Initiating ] dest=/src/weights-cache/0eda00f750189c5b minimum_chunk_size=150M url=https://replicate.delivery/pbxt/YDOmKBNclz5bFpPC8mKcB6zUZHLjmbArJcxNYJnMHuXHBxlE/trained_model.tar
2024-02-15T23:04:49Z | INFO | [ Complete ] dest=/src/weights-cache/0eda00f750189c5b size="186 MB" total_elapsed=0.646s url=https://replicate.delivery/pbxt/YDOmKBNclz5bFpPC8mKcB6zUZHLjmbArJcxNYJnMHuXHBxlE/trained_model.tar
b''
Downloaded weights in 0.8245742321014404 seconds
Loading fine-tuned model
Does not have Unet. assume we are using LoRA
Loading Unet LoRA
Prompt: A photo of <s0><s1>, running on soccer field, wearing the white jersey of soccer team Real Madrid. close shot.
txt2img mode
0%| | 0/95 [00:00<?, ?it/s]
1%| | 1/95 [00:00<00:25, 3.69it/s]
2%|β | 2/95 [00:00<00:25, 3.68it/s]
3%|β | 3/95 [00:00<00:25, 3.68it/s]
4%|β | 4/95 [00:01<00:24, 3.67it/s]
5%|β | 5/95 [00:01<00:24, 3.67it/s]
6%|β | 6/95 [00:01<00:24, 3.68it/s]
7%|β | 7/95 [00:01<00:23, 3.68it/s]
8%|β | 8/95 [00:02<00:23, 3.67it/s]
9%|β | 9/95 [00:02<00:23, 3.67it/s]
11%|β | 10/95 [00:02<00:23, 3.67it/s]
12%|ββ | 11/95 [00:02<00:22, 3.67it/s]
13%|ββ | 12/95 [00:03<00:22, 3.67it/s]
14%|ββ | 13/95 [00:03<00:22, 3.67it/s]
15%|ββ | 14/95 [00:03<00:22, 3.67it/s]
16%|ββ | 15/95 [00:04<00:21, 3.67it/s]
17%|ββ | 16/95 [00:04<00:21, 3.67it/s]
18%|ββ | 17/95 [00:04<00:21, 3.67it/s]
19%|ββ | 18/95 [00:04<00:20, 3.67it/s]
20%|ββ | 19/95 [00:05<00:20, 3.67it/s]
21%|ββ | 20/95 [00:05<00:20, 3.67it/s]
22%|βββ | 21/95 [00:05<00:20, 3.66it/s]
23%|βββ | 22/95 [00:05<00:19, 3.66it/s]
24%|βββ | 23/95 [00:06<00:19, 3.66it/s]
25%|βββ | 24/95 [00:06<00:19, 3.66it/s]
26%|βββ | 25/95 [00:06<00:19, 3.66it/s]
27%|βββ | 26/95 [00:07<00:18, 3.66it/s]
28%|βββ | 27/95 [00:07<00:18, 3.66it/s]
29%|βββ | 28/95 [00:07<00:18, 3.66it/s]
31%|βββ | 29/95 [00:07<00:18, 3.66it/s]
32%|ββββ | 30/95 [00:08<00:17, 3.66it/s]
33%|ββββ | 31/95 [00:08<00:17, 3.65it/s]
34%|ββββ | 32/95 [00:08<00:17, 3.66it/s]
35%|ββββ | 33/95 [00:09<00:16, 3.65it/s]
36%|ββββ | 34/95 [00:09<00:16, 3.65it/s]
37%|ββββ | 35/95 [00:09<00:16, 3.65it/s]
38%|ββββ | 36/95 [00:09<00:16, 3.65it/s]
39%|ββββ | 37/95 [00:10<00:15, 3.65it/s]
40%|ββββ | 38/95 [00:10<00:15, 3.65it/s]
41%|ββββ | 39/95 [00:10<00:15, 3.65it/s]
42%|βββββ | 40/95 [00:10<00:15, 3.65it/s]
43%|βββββ | 41/95 [00:11<00:14, 3.65it/s]
44%|βββββ | 42/95 [00:11<00:14, 3.65it/s]
45%|βββββ | 43/95 [00:11<00:14, 3.65it/s]
46%|βββββ | 44/95 [00:12<00:13, 3.65it/s]
47%|βββββ | 45/95 [00:12<00:13, 3.65it/s]
48%|βββββ | 46/95 [00:12<00:13, 3.65it/s]
49%|βββββ | 47/95 [00:12<00:13, 3.65it/s]
51%|βββββ | 48/95 [00:13<00:12, 3.65it/s]
52%|ββββββ | 49/95 [00:13<00:12, 3.65it/s]
53%|ββββββ | 50/95 [00:13<00:12, 3.65it/s]
54%|ββββββ | 51/95 [00:13<00:12, 3.65it/s]
55%|ββββββ | 52/95 [00:14<00:11, 3.64it/s]
56%|ββββββ | 53/95 [00:14<00:11, 3.64it/s]
57%|ββββββ | 54/95 [00:14<00:11, 3.65it/s]
58%|ββββββ | 55/95 [00:15<00:10, 3.65it/s]
59%|ββββββ | 56/95 [00:15<00:10, 3.64it/s]
60%|ββββββ | 57/95 [00:15<00:10, 3.64it/s]
61%|ββββββ | 58/95 [00:15<00:10, 3.64it/s]
62%|βββββββ | 59/95 [00:16<00:09, 3.64it/s]
63%|βββββββ | 60/95 [00:16<00:09, 3.65it/s]
64%|βββββββ | 61/95 [00:16<00:09, 3.64it/s]
65%|βββββββ | 62/95 [00:16<00:09, 3.64it/s]
66%|βββββββ | 63/95 [00:17<00:08, 3.64it/s]
67%|βββββββ | 64/95 [00:17<00:08, 3.64it/s]
68%|βββββββ | 65/95 [00:17<00:08, 3.64it/s]
69%|βββββββ | 66/95 [00:18<00:07, 3.64it/s]
71%|βββββββ | 67/95 [00:18<00:07, 3.64it/s]
72%|ββββββββ | 68/95 [00:18<00:07, 3.64it/s]
73%|ββββββββ | 69/95 [00:18<00:07, 3.64it/s]
74%|ββββββββ | 70/95 [00:19<00:06, 3.64it/s]
75%|ββββββββ | 71/95 [00:19<00:06, 3.64it/s]
76%|ββββββββ | 72/95 [00:19<00:06, 3.64it/s]
77%|ββββββββ | 73/95 [00:19<00:06, 3.64it/s]
78%|ββββββββ | 74/95 [00:20<00:05, 3.64it/s]
79%|ββββββββ | 75/95 [00:20<00:05, 3.64it/s]
80%|ββββββββ | 76/95 [00:20<00:05, 3.64it/s]
81%|ββββββββ | 77/95 [00:21<00:04, 3.64it/s]
82%|βββββββββ | 78/95 [00:21<00:04, 3.63it/s]
83%|βββββββββ | 79/95 [00:21<00:04, 3.64it/s]
84%|βββββββββ | 80/95 [00:21<00:04, 3.64it/s]
85%|βββββββββ | 81/95 [00:22<00:03, 3.64it/s]
86%|βββββββββ | 82/95 [00:22<00:03, 3.64it/s]
87%|βββββββββ | 83/95 [00:22<00:03, 3.63it/s]
88%|βββββββββ | 84/95 [00:23<00:03, 3.63it/s]
89%|βββββββββ | 85/95 [00:23<00:02, 3.64it/s]
91%|βββββββββ | 86/95 [00:23<00:02, 3.64it/s]
92%|ββββββββββ| 87/95 [00:23<00:02, 3.64it/s]
93%|ββββββββββ| 88/95 [00:24<00:01, 3.64it/s]
94%|ββββββββββ| 89/95 [00:24<00:01, 3.64it/s]
95%|ββββββββββ| 90/95 [00:24<00:01, 3.64it/s]
96%|ββββββββββ| 91/95 [00:24<00:01, 3.64it/s]
97%|ββββββββββ| 92/95 [00:25<00:00, 3.64it/s]
98%|ββββββββββ| 93/95 [00:25<00:00, 3.64it/s]
99%|ββββββββββ| 94/95 [00:25<00:00, 3.64it/s]
100%|ββββββββββ| 95/95 [00:26<00:00, 3.64it/s]
100%|ββββββββββ| 95/95 [00:26<00:00, 3.65it/s]
0%| | 0/5 [00:00<?, ?it/s]
20%|ββ | 1/5 [00:00<00:00, 4.25it/s]
40%|ββββ | 2/5 [00:00<00:00, 4.22it/s]
60%|ββββββ | 3/5 [00:00<00:00, 4.21it/s]
80%|ββββββββ | 4/5 [00:00<00:00, 4.21it/s]
100%|ββββββββββ| 5/5 [00:01<00:00, 4.20it/s]
100%|ββββββββββ| 5/5 [00:01<00:00, 4.21it/s]
This model costs approximately $0.038 to run on Replicate, or 26 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.
This model runs on Nvidia L40S GPU hardware. Predictions typically complete within 39 seconds. The predict time for this model varies significantly based on the inputs.
This model doesn't have a readme.
This model is warm. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
Using seed: 12659
Ensuring enough disk space...
Free disk space: 1585451642880
Downloading weights: https://replicate.delivery/pbxt/YDOmKBNclz5bFpPC8mKcB6zUZHLjmbArJcxNYJnMHuXHBxlE/trained_model.tar
2024-02-15T23:04:48Z | INFO | [ Initiating ] dest=/src/weights-cache/0eda00f750189c5b minimum_chunk_size=150M url=https://replicate.delivery/pbxt/YDOmKBNclz5bFpPC8mKcB6zUZHLjmbArJcxNYJnMHuXHBxlE/trained_model.tar
2024-02-15T23:04:49Z | INFO | [ Complete ] dest=/src/weights-cache/0eda00f750189c5b size="186 MB" total_elapsed=0.646s url=https://replicate.delivery/pbxt/YDOmKBNclz5bFpPC8mKcB6zUZHLjmbArJcxNYJnMHuXHBxlE/trained_model.tar
b''
Downloaded weights in 0.8245742321014404 seconds
Loading fine-tuned model
Does not have Unet. assume we are using LoRA
Loading Unet LoRA
Prompt: A photo of <s0><s1>, running on soccer field, wearing the white jersey of soccer team Real Madrid. close shot.
txt2img mode
0%| | 0/95 [00:00<?, ?it/s]
1%| | 1/95 [00:00<00:25, 3.69it/s]
2%|β | 2/95 [00:00<00:25, 3.68it/s]
3%|β | 3/95 [00:00<00:25, 3.68it/s]
4%|β | 4/95 [00:01<00:24, 3.67it/s]
5%|β | 5/95 [00:01<00:24, 3.67it/s]
6%|β | 6/95 [00:01<00:24, 3.68it/s]
7%|β | 7/95 [00:01<00:23, 3.68it/s]
8%|β | 8/95 [00:02<00:23, 3.67it/s]
9%|β | 9/95 [00:02<00:23, 3.67it/s]
11%|β | 10/95 [00:02<00:23, 3.67it/s]
12%|ββ | 11/95 [00:02<00:22, 3.67it/s]
13%|ββ | 12/95 [00:03<00:22, 3.67it/s]
14%|ββ | 13/95 [00:03<00:22, 3.67it/s]
15%|ββ | 14/95 [00:03<00:22, 3.67it/s]
16%|ββ | 15/95 [00:04<00:21, 3.67it/s]
17%|ββ | 16/95 [00:04<00:21, 3.67it/s]
18%|ββ | 17/95 [00:04<00:21, 3.67it/s]
19%|ββ | 18/95 [00:04<00:20, 3.67it/s]
20%|ββ | 19/95 [00:05<00:20, 3.67it/s]
21%|ββ | 20/95 [00:05<00:20, 3.67it/s]
22%|βββ | 21/95 [00:05<00:20, 3.66it/s]
23%|βββ | 22/95 [00:05<00:19, 3.66it/s]
24%|βββ | 23/95 [00:06<00:19, 3.66it/s]
25%|βββ | 24/95 [00:06<00:19, 3.66it/s]
26%|βββ | 25/95 [00:06<00:19, 3.66it/s]
27%|βββ | 26/95 [00:07<00:18, 3.66it/s]
28%|βββ | 27/95 [00:07<00:18, 3.66it/s]
29%|βββ | 28/95 [00:07<00:18, 3.66it/s]
31%|βββ | 29/95 [00:07<00:18, 3.66it/s]
32%|ββββ | 30/95 [00:08<00:17, 3.66it/s]
33%|ββββ | 31/95 [00:08<00:17, 3.65it/s]
34%|ββββ | 32/95 [00:08<00:17, 3.66it/s]
35%|ββββ | 33/95 [00:09<00:16, 3.65it/s]
36%|ββββ | 34/95 [00:09<00:16, 3.65it/s]
37%|ββββ | 35/95 [00:09<00:16, 3.65it/s]
38%|ββββ | 36/95 [00:09<00:16, 3.65it/s]
39%|ββββ | 37/95 [00:10<00:15, 3.65it/s]
40%|ββββ | 38/95 [00:10<00:15, 3.65it/s]
41%|ββββ | 39/95 [00:10<00:15, 3.65it/s]
42%|βββββ | 40/95 [00:10<00:15, 3.65it/s]
43%|βββββ | 41/95 [00:11<00:14, 3.65it/s]
44%|βββββ | 42/95 [00:11<00:14, 3.65it/s]
45%|βββββ | 43/95 [00:11<00:14, 3.65it/s]
46%|βββββ | 44/95 [00:12<00:13, 3.65it/s]
47%|βββββ | 45/95 [00:12<00:13, 3.65it/s]
48%|βββββ | 46/95 [00:12<00:13, 3.65it/s]
49%|βββββ | 47/95 [00:12<00:13, 3.65it/s]
51%|βββββ | 48/95 [00:13<00:12, 3.65it/s]
52%|ββββββ | 49/95 [00:13<00:12, 3.65it/s]
53%|ββββββ | 50/95 [00:13<00:12, 3.65it/s]
54%|ββββββ | 51/95 [00:13<00:12, 3.65it/s]
55%|ββββββ | 52/95 [00:14<00:11, 3.64it/s]
56%|ββββββ | 53/95 [00:14<00:11, 3.64it/s]
57%|ββββββ | 54/95 [00:14<00:11, 3.65it/s]
58%|ββββββ | 55/95 [00:15<00:10, 3.65it/s]
59%|ββββββ | 56/95 [00:15<00:10, 3.64it/s]
60%|ββββββ | 57/95 [00:15<00:10, 3.64it/s]
61%|ββββββ | 58/95 [00:15<00:10, 3.64it/s]
62%|βββββββ | 59/95 [00:16<00:09, 3.64it/s]
63%|βββββββ | 60/95 [00:16<00:09, 3.65it/s]
64%|βββββββ | 61/95 [00:16<00:09, 3.64it/s]
65%|βββββββ | 62/95 [00:16<00:09, 3.64it/s]
66%|βββββββ | 63/95 [00:17<00:08, 3.64it/s]
67%|βββββββ | 64/95 [00:17<00:08, 3.64it/s]
68%|βββββββ | 65/95 [00:17<00:08, 3.64it/s]
69%|βββββββ | 66/95 [00:18<00:07, 3.64it/s]
71%|βββββββ | 67/95 [00:18<00:07, 3.64it/s]
72%|ββββββββ | 68/95 [00:18<00:07, 3.64it/s]
73%|ββββββββ | 69/95 [00:18<00:07, 3.64it/s]
74%|ββββββββ | 70/95 [00:19<00:06, 3.64it/s]
75%|ββββββββ | 71/95 [00:19<00:06, 3.64it/s]
76%|ββββββββ | 72/95 [00:19<00:06, 3.64it/s]
77%|ββββββββ | 73/95 [00:19<00:06, 3.64it/s]
78%|ββββββββ | 74/95 [00:20<00:05, 3.64it/s]
79%|ββββββββ | 75/95 [00:20<00:05, 3.64it/s]
80%|ββββββββ | 76/95 [00:20<00:05, 3.64it/s]
81%|ββββββββ | 77/95 [00:21<00:04, 3.64it/s]
82%|βββββββββ | 78/95 [00:21<00:04, 3.63it/s]
83%|βββββββββ | 79/95 [00:21<00:04, 3.64it/s]
84%|βββββββββ | 80/95 [00:21<00:04, 3.64it/s]
85%|βββββββββ | 81/95 [00:22<00:03, 3.64it/s]
86%|βββββββββ | 82/95 [00:22<00:03, 3.64it/s]
87%|βββββββββ | 83/95 [00:22<00:03, 3.63it/s]
88%|βββββββββ | 84/95 [00:23<00:03, 3.63it/s]
89%|βββββββββ | 85/95 [00:23<00:02, 3.64it/s]
91%|βββββββββ | 86/95 [00:23<00:02, 3.64it/s]
92%|ββββββββββ| 87/95 [00:23<00:02, 3.64it/s]
93%|ββββββββββ| 88/95 [00:24<00:01, 3.64it/s]
94%|ββββββββββ| 89/95 [00:24<00:01, 3.64it/s]
95%|ββββββββββ| 90/95 [00:24<00:01, 3.64it/s]
96%|ββββββββββ| 91/95 [00:24<00:01, 3.64it/s]
97%|ββββββββββ| 92/95 [00:25<00:00, 3.64it/s]
98%|ββββββββββ| 93/95 [00:25<00:00, 3.64it/s]
99%|ββββββββββ| 94/95 [00:25<00:00, 3.64it/s]
100%|ββββββββββ| 95/95 [00:26<00:00, 3.64it/s]
100%|ββββββββββ| 95/95 [00:26<00:00, 3.65it/s]
0%| | 0/5 [00:00<?, ?it/s]
20%|ββ | 1/5 [00:00<00:00, 4.25it/s]
40%|ββββ | 2/5 [00:00<00:00, 4.22it/s]
60%|ββββββ | 3/5 [00:00<00:00, 4.21it/s]
80%|ββββββββ | 4/5 [00:00<00:00, 4.21it/s]
100%|ββββββββββ| 5/5 [00:01<00:00, 4.20it/s]
100%|ββββββββββ| 5/5 [00:01<00:00, 4.21it/s]