Readme
This model doesn't have a readme.
An SDXL fine-tune based on studio Ghibli picture stills
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run grabielairu/ghibli using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"grabielairu/ghibli:4b82bb7dbb3b153882a0c34d7f2cbc4f7012ea7eaddb4f65c257a3403c9b3253",
{
input: {
width: 1024,
height: 1024,
prompt: "illustration of a heron in TOK style ",
refine: "no_refiner",
scheduler: "K_EULER",
lora_scale: 0.6,
num_outputs: 1,
guidance_scale: 7.5,
apply_watermark: true,
high_noise_frac: 0.8,
negative_prompt: "",
prompt_strength: 0.8,
num_inference_steps: 50
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run grabielairu/ghibli using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"grabielairu/ghibli:4b82bb7dbb3b153882a0c34d7f2cbc4f7012ea7eaddb4f65c257a3403c9b3253",
input={
"width": 1024,
"height": 1024,
"prompt": "illustration of a heron in TOK style ",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": True,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run grabielairu/ghibli using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "4b82bb7dbb3b153882a0c34d7f2cbc4f7012ea7eaddb4f65c257a3403c9b3253",
"input": {
"width": 1024,
"height": 1024,
"prompt": "illustration of a heron in TOK style ",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2023-09-09T04:47:24.111858Z",
"created_at": "2023-09-09T04:47:09.180048Z",
"data_removed": false,
"error": null,
"id": "u334m4tb7pj6izxivt3xe6loza",
"input": {
"width": 1024,
"height": 1024,
"prompt": "illustration of a heron in TOK style ",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"prompt_strength": 0.8,
"num_inference_steps": 50
},
"logs": "Using seed: 33388\nPrompt: illustration of a heron in <s0><s1> style\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:13, 3.70it/s]\n 4%|▍ | 2/50 [00:00<00:12, 3.69it/s]\n 6%|▌ | 3/50 [00:00<00:12, 3.70it/s]\n 8%|▊ | 4/50 [00:01<00:12, 3.70it/s]\n 10%|█ | 5/50 [00:01<00:12, 3.71it/s]\n 12%|█▏ | 6/50 [00:01<00:11, 3.70it/s]\n 14%|█▍ | 7/50 [00:01<00:11, 3.70it/s]\n 16%|█▌ | 8/50 [00:02<00:11, 3.70it/s]\n 18%|█▊ | 9/50 [00:02<00:11, 3.70it/s]\n 20%|██ | 10/50 [00:02<00:10, 3.70it/s]\n 22%|██▏ | 11/50 [00:02<00:10, 3.70it/s]\n 24%|██▍ | 12/50 [00:03<00:10, 3.70it/s]\n 26%|██▌ | 13/50 [00:03<00:09, 3.70it/s]\n 28%|██▊ | 14/50 [00:03<00:09, 3.70it/s]\n 30%|███ | 15/50 [00:04<00:09, 3.70it/s]\n 32%|███▏ | 16/50 [00:04<00:09, 3.70it/s]\n 34%|███▍ | 17/50 [00:04<00:08, 3.70it/s]\n 36%|███▌ | 18/50 [00:04<00:08, 3.70it/s]\n 38%|███▊ | 19/50 [00:05<00:08, 3.69it/s]\n 40%|████ | 20/50 [00:05<00:08, 3.69it/s]\n 42%|████▏ | 21/50 [00:05<00:07, 3.69it/s]\n 44%|████▍ | 22/50 [00:05<00:07, 3.69it/s]\n 46%|████▌ | 23/50 [00:06<00:07, 3.69it/s]\n 48%|████▊ | 24/50 [00:06<00:07, 3.69it/s]\n 50%|█████ | 25/50 [00:06<00:06, 3.69it/s]\n 52%|█████▏ | 26/50 [00:07<00:06, 3.69it/s]\n 54%|█████▍ | 27/50 [00:07<00:06, 3.69it/s]\n 56%|█████▌ | 28/50 [00:07<00:05, 3.69it/s]\n 58%|█████▊ | 29/50 [00:07<00:05, 3.69it/s]\n 60%|██████ | 30/50 [00:08<00:05, 3.69it/s]\n 62%|██████▏ | 31/50 [00:08<00:05, 3.69it/s]\n 64%|██████▍ | 32/50 [00:08<00:04, 3.68it/s]\n 66%|██████▌ | 33/50 [00:08<00:04, 3.68it/s]\n 68%|██████▊ | 34/50 [00:09<00:04, 3.69it/s]\n 70%|███████ | 35/50 [00:09<00:04, 3.68it/s]\n 72%|███████▏ | 36/50 [00:09<00:03, 3.68it/s]\n 74%|███████▍ | 37/50 [00:10<00:03, 3.68it/s]\n 76%|███████▌ | 38/50 [00:10<00:03, 3.68it/s]\n 78%|███████▊ | 39/50 [00:10<00:02, 3.68it/s]\n 80%|████████ | 40/50 [00:10<00:02, 3.68it/s]\n 82%|████████▏ | 41/50 [00:11<00:02, 3.68it/s]\n 84%|████████▍ | 42/50 [00:11<00:02, 3.68it/s]\n 86%|████████▌ | 43/50 [00:11<00:01, 3.68it/s]\n 88%|████████▊ | 44/50 [00:11<00:01, 3.68it/s]\n 90%|█████████ | 45/50 [00:12<00:01, 3.68it/s]\n 92%|█████████▏| 46/50 [00:12<00:01, 3.68it/s]\n 94%|█████████▍| 47/50 [00:12<00:00, 3.68it/s]\n 96%|█████████▌| 48/50 [00:13<00:00, 3.68it/s]\n 98%|█████████▊| 49/50 [00:13<00:00, 3.68it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.68it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.69it/s]",
"metrics": {
"predict_time": 14.960865,
"total_time": 14.93181
},
"output": [
"https://pbxt.replicate.delivery/UlL23t2p2d7MGxA7eNYwnku3MnNiWdGMfjv8bvQ9RSLbraiRA/out-0.png"
],
"started_at": "2023-09-09T04:47:09.150993Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/u334m4tb7pj6izxivt3xe6loza",
"cancel": "https://api.replicate.com/v1/predictions/u334m4tb7pj6izxivt3xe6loza/cancel"
},
"version": "4b82bb7dbb3b153882a0c34d7f2cbc4f7012ea7eaddb4f65c257a3403c9b3253"
}
Using seed: 33388
Prompt: illustration of a heron in <s0><s1> style
txt2img mode
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:13, 3.70it/s]
4%|▍ | 2/50 [00:00<00:12, 3.69it/s]
6%|▌ | 3/50 [00:00<00:12, 3.70it/s]
8%|▊ | 4/50 [00:01<00:12, 3.70it/s]
10%|█ | 5/50 [00:01<00:12, 3.71it/s]
12%|█▏ | 6/50 [00:01<00:11, 3.70it/s]
14%|█▍ | 7/50 [00:01<00:11, 3.70it/s]
16%|█▌ | 8/50 [00:02<00:11, 3.70it/s]
18%|█▊ | 9/50 [00:02<00:11, 3.70it/s]
20%|██ | 10/50 [00:02<00:10, 3.70it/s]
22%|██▏ | 11/50 [00:02<00:10, 3.70it/s]
24%|██▍ | 12/50 [00:03<00:10, 3.70it/s]
26%|██▌ | 13/50 [00:03<00:09, 3.70it/s]
28%|██▊ | 14/50 [00:03<00:09, 3.70it/s]
30%|███ | 15/50 [00:04<00:09, 3.70it/s]
32%|███▏ | 16/50 [00:04<00:09, 3.70it/s]
34%|███▍ | 17/50 [00:04<00:08, 3.70it/s]
36%|███▌ | 18/50 [00:04<00:08, 3.70it/s]
38%|███▊ | 19/50 [00:05<00:08, 3.69it/s]
40%|████ | 20/50 [00:05<00:08, 3.69it/s]
42%|████▏ | 21/50 [00:05<00:07, 3.69it/s]
44%|████▍ | 22/50 [00:05<00:07, 3.69it/s]
46%|████▌ | 23/50 [00:06<00:07, 3.69it/s]
48%|████▊ | 24/50 [00:06<00:07, 3.69it/s]
50%|█████ | 25/50 [00:06<00:06, 3.69it/s]
52%|█████▏ | 26/50 [00:07<00:06, 3.69it/s]
54%|█████▍ | 27/50 [00:07<00:06, 3.69it/s]
56%|█████▌ | 28/50 [00:07<00:05, 3.69it/s]
58%|█████▊ | 29/50 [00:07<00:05, 3.69it/s]
60%|██████ | 30/50 [00:08<00:05, 3.69it/s]
62%|██████▏ | 31/50 [00:08<00:05, 3.69it/s]
64%|██████▍ | 32/50 [00:08<00:04, 3.68it/s]
66%|██████▌ | 33/50 [00:08<00:04, 3.68it/s]
68%|██████▊ | 34/50 [00:09<00:04, 3.69it/s]
70%|███████ | 35/50 [00:09<00:04, 3.68it/s]
72%|███████▏ | 36/50 [00:09<00:03, 3.68it/s]
74%|███████▍ | 37/50 [00:10<00:03, 3.68it/s]
76%|███████▌ | 38/50 [00:10<00:03, 3.68it/s]
78%|███████▊ | 39/50 [00:10<00:02, 3.68it/s]
80%|████████ | 40/50 [00:10<00:02, 3.68it/s]
82%|████████▏ | 41/50 [00:11<00:02, 3.68it/s]
84%|████████▍ | 42/50 [00:11<00:02, 3.68it/s]
86%|████████▌ | 43/50 [00:11<00:01, 3.68it/s]
88%|████████▊ | 44/50 [00:11<00:01, 3.68it/s]
90%|█████████ | 45/50 [00:12<00:01, 3.68it/s]
92%|█████████▏| 46/50 [00:12<00:01, 3.68it/s]
94%|█████████▍| 47/50 [00:12<00:00, 3.68it/s]
96%|█████████▌| 48/50 [00:13<00:00, 3.68it/s]
98%|█████████▊| 49/50 [00:13<00:00, 3.68it/s]
100%|██████████| 50/50 [00:13<00:00, 3.68it/s]
100%|██████████| 50/50 [00:13<00:00, 3.69it/s]
This model costs approximately $0.0081 to run on Replicate, or 123 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.
This model runs on Nvidia L40S GPU hardware. Predictions typically complete within 9 seconds.
This model doesn't have a readme.
This model is warm. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
Using seed: 33388
Prompt: illustration of a heron in <s0><s1> style
txt2img mode
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:13, 3.70it/s]
4%|▍ | 2/50 [00:00<00:12, 3.69it/s]
6%|▌ | 3/50 [00:00<00:12, 3.70it/s]
8%|▊ | 4/50 [00:01<00:12, 3.70it/s]
10%|█ | 5/50 [00:01<00:12, 3.71it/s]
12%|█▏ | 6/50 [00:01<00:11, 3.70it/s]
14%|█▍ | 7/50 [00:01<00:11, 3.70it/s]
16%|█▌ | 8/50 [00:02<00:11, 3.70it/s]
18%|█▊ | 9/50 [00:02<00:11, 3.70it/s]
20%|██ | 10/50 [00:02<00:10, 3.70it/s]
22%|██▏ | 11/50 [00:02<00:10, 3.70it/s]
24%|██▍ | 12/50 [00:03<00:10, 3.70it/s]
26%|██▌ | 13/50 [00:03<00:09, 3.70it/s]
28%|██▊ | 14/50 [00:03<00:09, 3.70it/s]
30%|███ | 15/50 [00:04<00:09, 3.70it/s]
32%|███▏ | 16/50 [00:04<00:09, 3.70it/s]
34%|███▍ | 17/50 [00:04<00:08, 3.70it/s]
36%|███▌ | 18/50 [00:04<00:08, 3.70it/s]
38%|███▊ | 19/50 [00:05<00:08, 3.69it/s]
40%|████ | 20/50 [00:05<00:08, 3.69it/s]
42%|████▏ | 21/50 [00:05<00:07, 3.69it/s]
44%|████▍ | 22/50 [00:05<00:07, 3.69it/s]
46%|████▌ | 23/50 [00:06<00:07, 3.69it/s]
48%|████▊ | 24/50 [00:06<00:07, 3.69it/s]
50%|█████ | 25/50 [00:06<00:06, 3.69it/s]
52%|█████▏ | 26/50 [00:07<00:06, 3.69it/s]
54%|█████▍ | 27/50 [00:07<00:06, 3.69it/s]
56%|█████▌ | 28/50 [00:07<00:05, 3.69it/s]
58%|█████▊ | 29/50 [00:07<00:05, 3.69it/s]
60%|██████ | 30/50 [00:08<00:05, 3.69it/s]
62%|██████▏ | 31/50 [00:08<00:05, 3.69it/s]
64%|██████▍ | 32/50 [00:08<00:04, 3.68it/s]
66%|██████▌ | 33/50 [00:08<00:04, 3.68it/s]
68%|██████▊ | 34/50 [00:09<00:04, 3.69it/s]
70%|███████ | 35/50 [00:09<00:04, 3.68it/s]
72%|███████▏ | 36/50 [00:09<00:03, 3.68it/s]
74%|███████▍ | 37/50 [00:10<00:03, 3.68it/s]
76%|███████▌ | 38/50 [00:10<00:03, 3.68it/s]
78%|███████▊ | 39/50 [00:10<00:02, 3.68it/s]
80%|████████ | 40/50 [00:10<00:02, 3.68it/s]
82%|████████▏ | 41/50 [00:11<00:02, 3.68it/s]
84%|████████▍ | 42/50 [00:11<00:02, 3.68it/s]
86%|████████▌ | 43/50 [00:11<00:01, 3.68it/s]
88%|████████▊ | 44/50 [00:11<00:01, 3.68it/s]
90%|█████████ | 45/50 [00:12<00:01, 3.68it/s]
92%|█████████▏| 46/50 [00:12<00:01, 3.68it/s]
94%|█████████▍| 47/50 [00:12<00:00, 3.68it/s]
96%|█████████▌| 48/50 [00:13<00:00, 3.68it/s]
98%|█████████▊| 49/50 [00:13<00:00, 3.68it/s]
100%|██████████| 50/50 [00:13<00:00, 3.68it/s]
100%|██████████| 50/50 [00:13<00:00, 3.69it/s]