Prediction
henn0124/af1-l:447e1eddcaba74f45bd268f3546718afc63e61c8ef93f99d93d853e4afae8ca5IDa86ksbegw9rm60cjacg9vdr2ncStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- generate image in style of AF1L of a punk punk style shoe with gold highlights
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "generate image in style of AF1L of a punk punk style shoe with gold highlights", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run henn0124/af1-l using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "henn0124/af1-l:447e1eddcaba74f45bd268f3546718afc63e61c8ef93f99d93d853e4afae8ca5", { input: { model: "dev", prompt: "generate image in style of AF1L of a punk punk style shoe with gold highlights", lora_scale: 1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run henn0124/af1-l using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "henn0124/af1-l:447e1eddcaba74f45bd268f3546718afc63e61c8ef93f99d93d853e4afae8ca5", input={ "model": "dev", "prompt": "generate image in style of AF1L of a punk punk style shoe with gold highlights", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run henn0124/af1-l using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "henn0124/af1-l:447e1eddcaba74f45bd268f3546718afc63e61c8ef93f99d93d853e4afae8ca5", "input": { "model": "dev", "prompt": "generate image in style of AF1L of a punk punk style shoe with gold highlights", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-03T16:05:26.699923Z", "created_at": "2024-10-03T16:05:12.546000Z", "data_removed": false, "error": null, "id": "a86ksbegw9rm60cjacg9vdr2nc", "input": { "model": "dev", "prompt": "generate image in style of AF1L of a punk punk style shoe with gold highlights", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 21370\nPrompt: generate image in style of AF1L of a punk punk style shoe with gold highlights\n[!] txt2img mode\nUsing dev model\nfree=6946119098368\nDownloading weights\n2024-10-03T16:05:12Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpg91oxri8/weights url=https://replicate.delivery/yhqm/Tir32koSx6I3JhgVkoCnOzsjxJV5wwhWfCYu0yMGsvlpeGjTA/trained_model.tar\n2024-10-03T16:05:16Z | INFO | [ Complete ] dest=/tmp/tmpg91oxri8/weights size=\"172 MB\" total_elapsed=3.498s url=https://replicate.delivery/yhqm/Tir32koSx6I3JhgVkoCnOzsjxJV5wwhWfCYu0yMGsvlpeGjTA/trained_model.tar\nDownloaded weights in 3.53s\nLoaded LoRAs in 4.11s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:09, 2.87it/s]\n 7%|▋ | 2/28 [00:00<00:08, 3.21it/s]\n 11%|█ | 3/28 [00:00<00:08, 3.05it/s]\n 14%|█▍ | 4/28 [00:01<00:08, 2.98it/s]\n 18%|█▊ | 5/28 [00:01<00:07, 2.94it/s]\n 21%|██▏ | 6/28 [00:02<00:07, 2.92it/s]\n 25%|██▌ | 7/28 [00:02<00:07, 2.90it/s]\n 29%|██▊ | 8/28 [00:02<00:06, 2.89it/s]\n 32%|███▏ | 9/28 [00:03<00:06, 2.89it/s]\n 36%|███▌ | 10/28 [00:03<00:06, 2.88it/s]\n 39%|███▉ | 11/28 [00:03<00:05, 2.88it/s]\n 43%|████▎ | 12/28 [00:04<00:05, 2.88it/s]\n 46%|████▋ | 13/28 [00:04<00:05, 2.88it/s]\n 50%|█████ | 14/28 [00:04<00:04, 2.88it/s]\n 54%|█████▎ | 15/28 [00:05<00:04, 2.88it/s]\n 57%|█████▋ | 16/28 [00:05<00:04, 2.87it/s]\n 61%|██████ | 17/28 [00:05<00:03, 2.87it/s]\n 64%|██████▍ | 18/28 [00:06<00:03, 2.87it/s]\n 68%|██████▊ | 19/28 [00:06<00:03, 2.87it/s]\n 71%|███████▏ | 20/28 [00:06<00:02, 2.87it/s]\n 75%|███████▌ | 21/28 [00:07<00:02, 2.87it/s]\n 79%|███████▊ | 22/28 [00:07<00:02, 2.87it/s]\n 82%|████████▏ | 23/28 [00:07<00:01, 2.87it/s]\n 86%|████████▌ | 24/28 [00:08<00:01, 2.87it/s]\n 89%|████████▉ | 25/28 [00:08<00:01, 2.87it/s]\n 93%|█████████▎| 26/28 [00:08<00:00, 2.87it/s]\n 96%|█████████▋| 27/28 [00:09<00:00, 2.87it/s]\n100%|██████████| 28/28 [00:09<00:00, 2.87it/s]\n100%|██████████| 28/28 [00:09<00:00, 2.89it/s]", "metrics": { "predict_time": 14.146740875, "total_time": 14.153923 }, "output": [ "https://replicate.delivery/yhqm/jCaeHDcafooBZEs4RKQHtTVNAfAsJVmrxBOVIqsaYtBNWOGnA/out-0.webp" ], "started_at": "2024-10-03T16:05:12.553182Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/a86ksbegw9rm60cjacg9vdr2nc", "cancel": "https://api.replicate.com/v1/predictions/a86ksbegw9rm60cjacg9vdr2nc/cancel" }, "version": "447e1eddcaba74f45bd268f3546718afc63e61c8ef93f99d93d853e4afae8ca5" }
Generated inUsing seed: 21370 Prompt: generate image in style of AF1L of a punk punk style shoe with gold highlights [!] txt2img mode Using dev model free=6946119098368 Downloading weights 2024-10-03T16:05:12Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpg91oxri8/weights url=https://replicate.delivery/yhqm/Tir32koSx6I3JhgVkoCnOzsjxJV5wwhWfCYu0yMGsvlpeGjTA/trained_model.tar 2024-10-03T16:05:16Z | INFO | [ Complete ] dest=/tmp/tmpg91oxri8/weights size="172 MB" total_elapsed=3.498s url=https://replicate.delivery/yhqm/Tir32koSx6I3JhgVkoCnOzsjxJV5wwhWfCYu0yMGsvlpeGjTA/trained_model.tar Downloaded weights in 3.53s Loaded LoRAs in 4.11s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:09, 2.87it/s] 7%|▋ | 2/28 [00:00<00:08, 3.21it/s] 11%|█ | 3/28 [00:00<00:08, 3.05it/s] 14%|█▍ | 4/28 [00:01<00:08, 2.98it/s] 18%|█▊ | 5/28 [00:01<00:07, 2.94it/s] 21%|██▏ | 6/28 [00:02<00:07, 2.92it/s] 25%|██▌ | 7/28 [00:02<00:07, 2.90it/s] 29%|██▊ | 8/28 [00:02<00:06, 2.89it/s] 32%|███▏ | 9/28 [00:03<00:06, 2.89it/s] 36%|███▌ | 10/28 [00:03<00:06, 2.88it/s] 39%|███▉ | 11/28 [00:03<00:05, 2.88it/s] 43%|████▎ | 12/28 [00:04<00:05, 2.88it/s] 46%|████▋ | 13/28 [00:04<00:05, 2.88it/s] 50%|█████ | 14/28 [00:04<00:04, 2.88it/s] 54%|█████▎ | 15/28 [00:05<00:04, 2.88it/s] 57%|█████▋ | 16/28 [00:05<00:04, 2.87it/s] 61%|██████ | 17/28 [00:05<00:03, 2.87it/s] 64%|██████▍ | 18/28 [00:06<00:03, 2.87it/s] 68%|██████▊ | 19/28 [00:06<00:03, 2.87it/s] 71%|███████▏ | 20/28 [00:06<00:02, 2.87it/s] 75%|███████▌ | 21/28 [00:07<00:02, 2.87it/s] 79%|███████▊ | 22/28 [00:07<00:02, 2.87it/s] 82%|████████▏ | 23/28 [00:07<00:01, 2.87it/s] 86%|████████▌ | 24/28 [00:08<00:01, 2.87it/s] 89%|████████▉ | 25/28 [00:08<00:01, 2.87it/s] 93%|█████████▎| 26/28 [00:08<00:00, 2.87it/s] 96%|█████████▋| 27/28 [00:09<00:00, 2.87it/s] 100%|██████████| 28/28 [00:09<00:00, 2.87it/s] 100%|██████████| 28/28 [00:09<00:00, 2.89it/s]
Prediction
henn0124/af1-l:447e1eddcaba74f45bd268f3546718afc63e61c8ef93f99d93d853e4afae8ca5ID86qqhpjkh9rm40cjacnvmjrzkwStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- generate image in style of AF1L of a shiny, blood red colored shoe
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "generate image in style of AF1L of a shiny, blood red colored shoe", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run henn0124/af1-l using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "henn0124/af1-l:447e1eddcaba74f45bd268f3546718afc63e61c8ef93f99d93d853e4afae8ca5", { input: { model: "dev", prompt: "generate image in style of AF1L of a shiny, blood red colored shoe", lora_scale: 1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run henn0124/af1-l using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "henn0124/af1-l:447e1eddcaba74f45bd268f3546718afc63e61c8ef93f99d93d853e4afae8ca5", input={ "model": "dev", "prompt": "generate image in style of AF1L of a shiny, blood red colored shoe", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run henn0124/af1-l using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "henn0124/af1-l:447e1eddcaba74f45bd268f3546718afc63e61c8ef93f99d93d853e4afae8ca5", "input": { "model": "dev", "prompt": "generate image in style of AF1L of a shiny, blood red colored shoe", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-03T16:16:57.307952Z", "created_at": "2024-10-03T16:16:41.354000Z", "data_removed": false, "error": null, "id": "86qqhpjkh9rm40cjacnvmjrzkw", "input": { "model": "dev", "prompt": "generate image in style of AF1L of a shiny, blood red colored shoe", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 61014\nPrompt: generate image in style of AF1L of a shiny, blood red colored shoe\n[!] txt2img mode\nUsing dev model\nfree=6898680532992\nDownloading weights\n2024-10-03T16:16:44Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmprzarxrnt/weights url=https://replicate.delivery/yhqm/Tir32koSx6I3JhgVkoCnOzsjxJV5wwhWfCYu0yMGsvlpeGjTA/trained_model.tar\n2024-10-03T16:16:46Z | INFO | [ Complete ] dest=/tmp/tmprzarxrnt/weights size=\"172 MB\" total_elapsed=1.725s url=https://replicate.delivery/yhqm/Tir32koSx6I3JhgVkoCnOzsjxJV5wwhWfCYu0yMGsvlpeGjTA/trained_model.tar\nDownloaded weights in 1.75s\nLoaded LoRAs in 2.49s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:09, 2.87it/s]\n 7%|▋ | 2/28 [00:00<00:08, 3.20it/s]\n 11%|█ | 3/28 [00:00<00:08, 3.04it/s]\n 14%|█▍ | 4/28 [00:01<00:08, 2.97it/s]\n 18%|█▊ | 5/28 [00:01<00:07, 2.93it/s]\n 21%|██▏ | 6/28 [00:02<00:07, 2.91it/s]\n 25%|██▌ | 7/28 [00:02<00:07, 2.89it/s]\n 29%|██▊ | 8/28 [00:02<00:06, 2.88it/s]\n 32%|███▏ | 9/28 [00:03<00:06, 2.88it/s]\n 36%|███▌ | 10/28 [00:03<00:06, 2.87it/s]\n 39%|███▉ | 11/28 [00:03<00:05, 2.87it/s]\n 43%|████▎ | 12/28 [00:04<00:05, 2.87it/s]\n 46%|████▋ | 13/28 [00:04<00:05, 2.87it/s]\n 50%|█████ | 14/28 [00:04<00:04, 2.87it/s]\n 54%|█████▎ | 15/28 [00:05<00:04, 2.87it/s]\n 57%|█████▋ | 16/28 [00:05<00:04, 2.87it/s]\n 61%|██████ | 17/28 [00:05<00:03, 2.87it/s]\n 64%|██████▍ | 18/28 [00:06<00:03, 2.87it/s]\n 68%|██████▊ | 19/28 [00:06<00:03, 2.87it/s]\n 71%|███████▏ | 20/28 [00:06<00:02, 2.87it/s]\n 75%|███████▌ | 21/28 [00:07<00:02, 2.87it/s]\n 79%|███████▊ | 22/28 [00:07<00:02, 2.87it/s]\n 82%|████████▏ | 23/28 [00:07<00:01, 2.87it/s]\n 86%|████████▌ | 24/28 [00:08<00:01, 2.87it/s]\n 89%|████████▉ | 25/28 [00:08<00:01, 2.87it/s]\n 93%|█████████▎| 26/28 [00:09<00:00, 2.87it/s]\n 96%|█████████▋| 27/28 [00:09<00:00, 2.87it/s]\n100%|██████████| 28/28 [00:09<00:00, 2.87it/s]\n100%|██████████| 28/28 [00:09<00:00, 2.89it/s]", "metrics": { "predict_time": 12.511229114, "total_time": 15.953952 }, "output": [ "https://replicate.delivery/yhqm/NDe1UM61EPwAZ6itWZxX4dLweTaLTkg6PEb2PJuKabN5VHjTA/out-0.webp" ], "started_at": "2024-10-03T16:16:44.796723Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/86qqhpjkh9rm40cjacnvmjrzkw", "cancel": "https://api.replicate.com/v1/predictions/86qqhpjkh9rm40cjacnvmjrzkw/cancel" }, "version": "447e1eddcaba74f45bd268f3546718afc63e61c8ef93f99d93d853e4afae8ca5" }
Generated inUsing seed: 61014 Prompt: generate image in style of AF1L of a shiny, blood red colored shoe [!] txt2img mode Using dev model free=6898680532992 Downloading weights 2024-10-03T16:16:44Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmprzarxrnt/weights url=https://replicate.delivery/yhqm/Tir32koSx6I3JhgVkoCnOzsjxJV5wwhWfCYu0yMGsvlpeGjTA/trained_model.tar 2024-10-03T16:16:46Z | INFO | [ Complete ] dest=/tmp/tmprzarxrnt/weights size="172 MB" total_elapsed=1.725s url=https://replicate.delivery/yhqm/Tir32koSx6I3JhgVkoCnOzsjxJV5wwhWfCYu0yMGsvlpeGjTA/trained_model.tar Downloaded weights in 1.75s Loaded LoRAs in 2.49s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:09, 2.87it/s] 7%|▋ | 2/28 [00:00<00:08, 3.20it/s] 11%|█ | 3/28 [00:00<00:08, 3.04it/s] 14%|█▍ | 4/28 [00:01<00:08, 2.97it/s] 18%|█▊ | 5/28 [00:01<00:07, 2.93it/s] 21%|██▏ | 6/28 [00:02<00:07, 2.91it/s] 25%|██▌ | 7/28 [00:02<00:07, 2.89it/s] 29%|██▊ | 8/28 [00:02<00:06, 2.88it/s] 32%|███▏ | 9/28 [00:03<00:06, 2.88it/s] 36%|███▌ | 10/28 [00:03<00:06, 2.87it/s] 39%|███▉ | 11/28 [00:03<00:05, 2.87it/s] 43%|████▎ | 12/28 [00:04<00:05, 2.87it/s] 46%|████▋ | 13/28 [00:04<00:05, 2.87it/s] 50%|█████ | 14/28 [00:04<00:04, 2.87it/s] 54%|█████▎ | 15/28 [00:05<00:04, 2.87it/s] 57%|█████▋ | 16/28 [00:05<00:04, 2.87it/s] 61%|██████ | 17/28 [00:05<00:03, 2.87it/s] 64%|██████▍ | 18/28 [00:06<00:03, 2.87it/s] 68%|██████▊ | 19/28 [00:06<00:03, 2.87it/s] 71%|███████▏ | 20/28 [00:06<00:02, 2.87it/s] 75%|███████▌ | 21/28 [00:07<00:02, 2.87it/s] 79%|███████▊ | 22/28 [00:07<00:02, 2.87it/s] 82%|████████▏ | 23/28 [00:07<00:01, 2.87it/s] 86%|████████▌ | 24/28 [00:08<00:01, 2.87it/s] 89%|████████▉ | 25/28 [00:08<00:01, 2.87it/s] 93%|█████████▎| 26/28 [00:09<00:00, 2.87it/s] 96%|█████████▋| 27/28 [00:09<00:00, 2.87it/s] 100%|██████████| 28/28 [00:09<00:00, 2.87it/s] 100%|██████████| 28/28 [00:09<00:00, 2.89it/s]
Prediction
henn0124/af1-l:447e1eddcaba74f45bd268f3546718afc63e61c8ef93f99d93d853e4afae8ca5IDszzfvvkensrm60cjacpbgg0mtmStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- generate image in style of AF1L of a dripping, blue colored shoe on wet pavement
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "generate image in style of AF1L of a dripping, blue colored shoe on wet pavement", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run henn0124/af1-l using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "henn0124/af1-l:447e1eddcaba74f45bd268f3546718afc63e61c8ef93f99d93d853e4afae8ca5", { input: { model: "dev", prompt: "generate image in style of AF1L of a dripping, blue colored shoe on wet pavement", lora_scale: 1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run henn0124/af1-l using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "henn0124/af1-l:447e1eddcaba74f45bd268f3546718afc63e61c8ef93f99d93d853e4afae8ca5", input={ "model": "dev", "prompt": "generate image in style of AF1L of a dripping, blue colored shoe on wet pavement", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run henn0124/af1-l using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "henn0124/af1-l:447e1eddcaba74f45bd268f3546718afc63e61c8ef93f99d93d853e4afae8ca5", "input": { "model": "dev", "prompt": "generate image in style of AF1L of a dripping, blue colored shoe on wet pavement", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-03T16:18:05.939907Z", "created_at": "2024-10-03T16:17:53.838000Z", "data_removed": false, "error": null, "id": "szzfvvkensrm60cjacpbgg0mtm", "input": { "model": "dev", "prompt": "generate image in style of AF1L of a dripping, blue colored shoe on wet pavement", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 26727\nPrompt: generate image in style of AF1L of a dripping, blue colored shoe on wet pavement\n[!] txt2img mode\nUsing dev model\nfree=6625813741568\nDownloading weights\n2024-10-03T16:17:53Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmphdu8qq92/weights url=https://replicate.delivery/yhqm/Tir32koSx6I3JhgVkoCnOzsjxJV5wwhWfCYu0yMGsvlpeGjTA/trained_model.tar\n2024-10-03T16:17:55Z | INFO | [ Complete ] dest=/tmp/tmphdu8qq92/weights size=\"172 MB\" total_elapsed=1.306s url=https://replicate.delivery/yhqm/Tir32koSx6I3JhgVkoCnOzsjxJV5wwhWfCYu0yMGsvlpeGjTA/trained_model.tar\nDownloaded weights in 1.34s\nLoaded LoRAs in 2.09s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:09, 2.88it/s]\n 7%|▋ | 2/28 [00:00<00:08, 3.21it/s]\n 11%|█ | 3/28 [00:00<00:08, 3.05it/s]\n 14%|█▍ | 4/28 [00:01<00:08, 2.98it/s]\n 18%|█▊ | 5/28 [00:01<00:07, 2.95it/s]\n 21%|██▏ | 6/28 [00:02<00:07, 2.93it/s]\n 25%|██▌ | 7/28 [00:02<00:07, 2.91it/s]\n 29%|██▊ | 8/28 [00:02<00:06, 2.90it/s]\n 32%|███▏ | 9/28 [00:03<00:06, 2.90it/s]\n 36%|███▌ | 10/28 [00:03<00:06, 2.89it/s]\n 39%|███▉ | 11/28 [00:03<00:05, 2.89it/s]\n 43%|████▎ | 12/28 [00:04<00:05, 2.89it/s]\n 46%|████▋ | 13/28 [00:04<00:05, 2.89it/s]\n 50%|█████ | 14/28 [00:04<00:04, 2.89it/s]\n 54%|█████▎ | 15/28 [00:05<00:04, 2.89it/s]\n 57%|█████▋ | 16/28 [00:05<00:04, 2.89it/s]\n 61%|██████ | 17/28 [00:05<00:03, 2.89it/s]\n 64%|██████▍ | 18/28 [00:06<00:03, 2.89it/s]\n 68%|██████▊ | 19/28 [00:06<00:03, 2.89it/s]\n 71%|███████▏ | 20/28 [00:06<00:02, 2.89it/s]\n 75%|███████▌ | 21/28 [00:07<00:02, 2.89it/s]\n 79%|███████▊ | 22/28 [00:07<00:02, 2.89it/s]\n 82%|████████▏ | 23/28 [00:07<00:01, 2.89it/s]\n 86%|████████▌ | 24/28 [00:08<00:01, 2.89it/s]\n 89%|████████▉ | 25/28 [00:08<00:01, 2.89it/s]\n 93%|█████████▎| 26/28 [00:08<00:00, 2.89it/s]\n 96%|█████████▋| 27/28 [00:09<00:00, 2.89it/s]\n100%|██████████| 28/28 [00:09<00:00, 2.88it/s]\n100%|██████████| 28/28 [00:09<00:00, 2.90it/s]", "metrics": { "predict_time": 12.088870828, "total_time": 12.101907 }, "output": [ "https://replicate.delivery/yhqm/7Mr34u8oWfV6EinAigbvP19pTqIIZkETdWigiFAnD13eWHjTA/out-0.webp" ], "started_at": "2024-10-03T16:17:53.851036Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/szzfvvkensrm60cjacpbgg0mtm", "cancel": "https://api.replicate.com/v1/predictions/szzfvvkensrm60cjacpbgg0mtm/cancel" }, "version": "447e1eddcaba74f45bd268f3546718afc63e61c8ef93f99d93d853e4afae8ca5" }
Generated inUsing seed: 26727 Prompt: generate image in style of AF1L of a dripping, blue colored shoe on wet pavement [!] txt2img mode Using dev model free=6625813741568 Downloading weights 2024-10-03T16:17:53Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmphdu8qq92/weights url=https://replicate.delivery/yhqm/Tir32koSx6I3JhgVkoCnOzsjxJV5wwhWfCYu0yMGsvlpeGjTA/trained_model.tar 2024-10-03T16:17:55Z | INFO | [ Complete ] dest=/tmp/tmphdu8qq92/weights size="172 MB" total_elapsed=1.306s url=https://replicate.delivery/yhqm/Tir32koSx6I3JhgVkoCnOzsjxJV5wwhWfCYu0yMGsvlpeGjTA/trained_model.tar Downloaded weights in 1.34s Loaded LoRAs in 2.09s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:09, 2.88it/s] 7%|▋ | 2/28 [00:00<00:08, 3.21it/s] 11%|█ | 3/28 [00:00<00:08, 3.05it/s] 14%|█▍ | 4/28 [00:01<00:08, 2.98it/s] 18%|█▊ | 5/28 [00:01<00:07, 2.95it/s] 21%|██▏ | 6/28 [00:02<00:07, 2.93it/s] 25%|██▌ | 7/28 [00:02<00:07, 2.91it/s] 29%|██▊ | 8/28 [00:02<00:06, 2.90it/s] 32%|███▏ | 9/28 [00:03<00:06, 2.90it/s] 36%|███▌ | 10/28 [00:03<00:06, 2.89it/s] 39%|███▉ | 11/28 [00:03<00:05, 2.89it/s] 43%|████▎ | 12/28 [00:04<00:05, 2.89it/s] 46%|████▋ | 13/28 [00:04<00:05, 2.89it/s] 50%|█████ | 14/28 [00:04<00:04, 2.89it/s] 54%|█████▎ | 15/28 [00:05<00:04, 2.89it/s] 57%|█████▋ | 16/28 [00:05<00:04, 2.89it/s] 61%|██████ | 17/28 [00:05<00:03, 2.89it/s] 64%|██████▍ | 18/28 [00:06<00:03, 2.89it/s] 68%|██████▊ | 19/28 [00:06<00:03, 2.89it/s] 71%|███████▏ | 20/28 [00:06<00:02, 2.89it/s] 75%|███████▌ | 21/28 [00:07<00:02, 2.89it/s] 79%|███████▊ | 22/28 [00:07<00:02, 2.89it/s] 82%|████████▏ | 23/28 [00:07<00:01, 2.89it/s] 86%|████████▌ | 24/28 [00:08<00:01, 2.89it/s] 89%|████████▉ | 25/28 [00:08<00:01, 2.89it/s] 93%|█████████▎| 26/28 [00:08<00:00, 2.89it/s] 96%|█████████▋| 27/28 [00:09<00:00, 2.89it/s] 100%|██████████| 28/28 [00:09<00:00, 2.88it/s] 100%|██████████| 28/28 [00:09<00:00, 2.90it/s]
Prediction
henn0124/af1-l:447e1eddcaba74f45bd268f3546718afc63e61c8ef93f99d93d853e4afae8ca5ID8ekdz4p6fhrm20cjacrsdhcn6cStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- generate image in style of AF1L of a white & "Where is Waldo?" shoe on brick sidewalk
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "generate image in style of AF1L of a white & \"Where is Waldo?\" shoe on brick sidewalk", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run henn0124/af1-l using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "henn0124/af1-l:447e1eddcaba74f45bd268f3546718afc63e61c8ef93f99d93d853e4afae8ca5", { input: { model: "dev", prompt: "generate image in style of AF1L of a white & \"Where is Waldo?\" shoe on brick sidewalk", lora_scale: 1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run henn0124/af1-l using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "henn0124/af1-l:447e1eddcaba74f45bd268f3546718afc63e61c8ef93f99d93d853e4afae8ca5", input={ "model": "dev", "prompt": "generate image in style of AF1L of a white & \"Where is Waldo?\" shoe on brick sidewalk", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run henn0124/af1-l using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "henn0124/af1-l:447e1eddcaba74f45bd268f3546718afc63e61c8ef93f99d93d853e4afae8ca5", "input": { "model": "dev", "prompt": "generate image in style of AF1L of a white & \\"Where is Waldo?\\" shoe on brick sidewalk", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-03T16:23:54.698039Z", "created_at": "2024-10-03T16:23:43.996000Z", "data_removed": false, "error": null, "id": "8ekdz4p6fhrm20cjacrsdhcn6c", "input": { "model": "dev", "prompt": "generate image in style of AF1L of a white & \"Where is Waldo?\" shoe on brick sidewalk", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 51015\nPrompt: generate image in style of AF1L of a white & \"Where is Waldo?\" shoe on brick sidewalk\n[!] txt2img mode\nUsing dev model\nLoaded LoRAs in 0.71s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:09, 2.88it/s]\n 7%|▋ | 2/28 [00:00<00:08, 3.22it/s]\n 11%|█ | 3/28 [00:00<00:08, 3.06it/s]\n 14%|█▍ | 4/28 [00:01<00:08, 2.99it/s]\n 18%|█▊ | 5/28 [00:01<00:07, 2.95it/s]\n 21%|██▏ | 6/28 [00:02<00:07, 2.93it/s]\n 25%|██▌ | 7/28 [00:02<00:07, 2.91it/s]\n 29%|██▊ | 8/28 [00:02<00:06, 2.91it/s]\n 32%|███▏ | 9/28 [00:03<00:06, 2.90it/s]\n 36%|███▌ | 10/28 [00:03<00:06, 2.90it/s]\n 39%|███▉ | 11/28 [00:03<00:05, 2.89it/s]\n 43%|████▎ | 12/28 [00:04<00:05, 2.89it/s]\n 46%|████▋ | 13/28 [00:04<00:05, 2.89it/s]\n 50%|█████ | 14/28 [00:04<00:04, 2.89it/s]\n 54%|█████▎ | 15/28 [00:05<00:04, 2.89it/s]\n 57%|█████▋ | 16/28 [00:05<00:04, 2.89it/s]\n 61%|██████ | 17/28 [00:05<00:03, 2.89it/s]\n 64%|██████▍ | 18/28 [00:06<00:03, 2.89it/s]\n 68%|██████▊ | 19/28 [00:06<00:03, 2.89it/s]\n 71%|███████▏ | 20/28 [00:06<00:02, 2.89it/s]\n 75%|███████▌ | 21/28 [00:07<00:02, 2.89it/s]\n 79%|███████▊ | 22/28 [00:07<00:02, 2.89it/s]\n 82%|████████▏ | 23/28 [00:07<00:01, 2.88it/s]\n 86%|████████▌ | 24/28 [00:08<00:01, 2.88it/s]\n 89%|████████▉ | 25/28 [00:08<00:01, 2.88it/s]\n 93%|█████████▎| 26/28 [00:08<00:00, 2.89it/s]\n 96%|█████████▋| 27/28 [00:09<00:00, 2.89it/s]\n100%|██████████| 28/28 [00:09<00:00, 2.89it/s]\n100%|██████████| 28/28 [00:09<00:00, 2.90it/s]", "metrics": { "predict_time": 10.695203759, "total_time": 10.702039 }, "output": [ "https://replicate.delivery/yhqm/hBxicxd7ka53M9OzeLXoVxYg75huYFH0PpOQCXqoLTCNujxJA/out-0.webp" ], "started_at": "2024-10-03T16:23:44.002835Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/8ekdz4p6fhrm20cjacrsdhcn6c", "cancel": "https://api.replicate.com/v1/predictions/8ekdz4p6fhrm20cjacrsdhcn6c/cancel" }, "version": "447e1eddcaba74f45bd268f3546718afc63e61c8ef93f99d93d853e4afae8ca5" }
Generated inUsing seed: 51015 Prompt: generate image in style of AF1L of a white & "Where is Waldo?" shoe on brick sidewalk [!] txt2img mode Using dev model Loaded LoRAs in 0.71s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:09, 2.88it/s] 7%|▋ | 2/28 [00:00<00:08, 3.22it/s] 11%|█ | 3/28 [00:00<00:08, 3.06it/s] 14%|█▍ | 4/28 [00:01<00:08, 2.99it/s] 18%|█▊ | 5/28 [00:01<00:07, 2.95it/s] 21%|██▏ | 6/28 [00:02<00:07, 2.93it/s] 25%|██▌ | 7/28 [00:02<00:07, 2.91it/s] 29%|██▊ | 8/28 [00:02<00:06, 2.91it/s] 32%|███▏ | 9/28 [00:03<00:06, 2.90it/s] 36%|███▌ | 10/28 [00:03<00:06, 2.90it/s] 39%|███▉ | 11/28 [00:03<00:05, 2.89it/s] 43%|████▎ | 12/28 [00:04<00:05, 2.89it/s] 46%|████▋ | 13/28 [00:04<00:05, 2.89it/s] 50%|█████ | 14/28 [00:04<00:04, 2.89it/s] 54%|█████▎ | 15/28 [00:05<00:04, 2.89it/s] 57%|█████▋ | 16/28 [00:05<00:04, 2.89it/s] 61%|██████ | 17/28 [00:05<00:03, 2.89it/s] 64%|██████▍ | 18/28 [00:06<00:03, 2.89it/s] 68%|██████▊ | 19/28 [00:06<00:03, 2.89it/s] 71%|███████▏ | 20/28 [00:06<00:02, 2.89it/s] 75%|███████▌ | 21/28 [00:07<00:02, 2.89it/s] 79%|███████▊ | 22/28 [00:07<00:02, 2.89it/s] 82%|████████▏ | 23/28 [00:07<00:01, 2.88it/s] 86%|████████▌ | 24/28 [00:08<00:01, 2.88it/s] 89%|████████▉ | 25/28 [00:08<00:01, 2.88it/s] 93%|█████████▎| 26/28 [00:08<00:00, 2.89it/s] 96%|█████████▋| 27/28 [00:09<00:00, 2.89it/s] 100%|██████████| 28/28 [00:09<00:00, 2.89it/s] 100%|██████████| 28/28 [00:09<00:00, 2.90it/s]
Prediction
henn0124/af1-l:447e1eddcaba74f45bd268f3546718afc63e61c8ef93f99d93d853e4afae8ca5ID3aqd8vp4ysrm00cjacsay69px8StatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- generate image in style of AF1L of a green plaid shoe in grass with four leaf clovers
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "generate image in style of AF1L of a green plaid shoe in grass with four leaf clovers", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run henn0124/af1-l using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "henn0124/af1-l:447e1eddcaba74f45bd268f3546718afc63e61c8ef93f99d93d853e4afae8ca5", { input: { model: "dev", prompt: "generate image in style of AF1L of a green plaid shoe in grass with four leaf clovers", lora_scale: 1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run henn0124/af1-l using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "henn0124/af1-l:447e1eddcaba74f45bd268f3546718afc63e61c8ef93f99d93d853e4afae8ca5", input={ "model": "dev", "prompt": "generate image in style of AF1L of a green plaid shoe in grass with four leaf clovers", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run henn0124/af1-l using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "henn0124/af1-l:447e1eddcaba74f45bd268f3546718afc63e61c8ef93f99d93d853e4afae8ca5", "input": { "model": "dev", "prompt": "generate image in style of AF1L of a green plaid shoe in grass with four leaf clovers", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-03T16:24:59.790271Z", "created_at": "2024-10-03T16:24:49.142000Z", "data_removed": false, "error": null, "id": "3aqd8vp4ysrm00cjacsay69px8", "input": { "model": "dev", "prompt": "generate image in style of AF1L of a green plaid shoe in grass with four leaf clovers", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 22786\nPrompt: generate image in style of AF1L of a green plaid shoe in grass with four leaf clovers\n[!] txt2img mode\nUsing dev model\nLoaded LoRAs in 0.59s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:09, 2.86it/s]\n 7%|▋ | 2/28 [00:00<00:08, 3.19it/s]\n 11%|█ | 3/28 [00:00<00:08, 3.04it/s]\n 14%|█▍ | 4/28 [00:01<00:08, 2.97it/s]\n 18%|█▊ | 5/28 [00:01<00:07, 2.93it/s]\n 21%|██▏ | 6/28 [00:02<00:07, 2.91it/s]\n 25%|██▌ | 7/28 [00:02<00:07, 2.90it/s]\n 29%|██▊ | 8/28 [00:02<00:06, 2.89it/s]\n 32%|███▏ | 9/28 [00:03<00:06, 2.88it/s]\n 36%|███▌ | 10/28 [00:03<00:06, 2.88it/s]\n 39%|███▉ | 11/28 [00:03<00:05, 2.87it/s]\n 43%|████▎ | 12/28 [00:04<00:05, 2.87it/s]\n 46%|████▋ | 13/28 [00:04<00:05, 2.87it/s]\n 50%|█████ | 14/28 [00:04<00:04, 2.87it/s]\n 54%|█████▎ | 15/28 [00:05<00:04, 2.87it/s]\n 57%|█████▋ | 16/28 [00:05<00:04, 2.87it/s]\n 61%|██████ | 17/28 [00:05<00:03, 2.87it/s]\n 64%|██████▍ | 18/28 [00:06<00:03, 2.87it/s]\n 68%|██████▊ | 19/28 [00:06<00:03, 2.87it/s]\n 71%|███████▏ | 20/28 [00:06<00:02, 2.87it/s]\n 75%|███████▌ | 21/28 [00:07<00:02, 2.87it/s]\n 79%|███████▊ | 22/28 [00:07<00:02, 2.87it/s]\n 82%|████████▏ | 23/28 [00:07<00:01, 2.87it/s]\n 86%|████████▌ | 24/28 [00:08<00:01, 2.87it/s]\n 89%|████████▉ | 25/28 [00:08<00:01, 2.87it/s]\n 93%|█████████▎| 26/28 [00:09<00:00, 2.87it/s]\n 96%|█████████▋| 27/28 [00:09<00:00, 2.87it/s]\n100%|██████████| 28/28 [00:09<00:00, 2.87it/s]\n100%|██████████| 28/28 [00:09<00:00, 2.88it/s]", "metrics": { "predict_time": 10.640663271, "total_time": 10.648271 }, "output": [ "https://replicate.delivery/yhqm/k4dPMKLOYLY5B1LLdQl340Qee9nQpwQDJCkS4gHDqhe36OGnA/out-0.webp" ], "started_at": "2024-10-03T16:24:49.149607Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/3aqd8vp4ysrm00cjacsay69px8", "cancel": "https://api.replicate.com/v1/predictions/3aqd8vp4ysrm00cjacsay69px8/cancel" }, "version": "447e1eddcaba74f45bd268f3546718afc63e61c8ef93f99d93d853e4afae8ca5" }
Generated inUsing seed: 22786 Prompt: generate image in style of AF1L of a green plaid shoe in grass with four leaf clovers [!] txt2img mode Using dev model Loaded LoRAs in 0.59s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:09, 2.86it/s] 7%|▋ | 2/28 [00:00<00:08, 3.19it/s] 11%|█ | 3/28 [00:00<00:08, 3.04it/s] 14%|█▍ | 4/28 [00:01<00:08, 2.97it/s] 18%|█▊ | 5/28 [00:01<00:07, 2.93it/s] 21%|██▏ | 6/28 [00:02<00:07, 2.91it/s] 25%|██▌ | 7/28 [00:02<00:07, 2.90it/s] 29%|██▊ | 8/28 [00:02<00:06, 2.89it/s] 32%|███▏ | 9/28 [00:03<00:06, 2.88it/s] 36%|███▌ | 10/28 [00:03<00:06, 2.88it/s] 39%|███▉ | 11/28 [00:03<00:05, 2.87it/s] 43%|████▎ | 12/28 [00:04<00:05, 2.87it/s] 46%|████▋ | 13/28 [00:04<00:05, 2.87it/s] 50%|█████ | 14/28 [00:04<00:04, 2.87it/s] 54%|█████▎ | 15/28 [00:05<00:04, 2.87it/s] 57%|█████▋ | 16/28 [00:05<00:04, 2.87it/s] 61%|██████ | 17/28 [00:05<00:03, 2.87it/s] 64%|██████▍ | 18/28 [00:06<00:03, 2.87it/s] 68%|██████▊ | 19/28 [00:06<00:03, 2.87it/s] 71%|███████▏ | 20/28 [00:06<00:02, 2.87it/s] 75%|███████▌ | 21/28 [00:07<00:02, 2.87it/s] 79%|███████▊ | 22/28 [00:07<00:02, 2.87it/s] 82%|████████▏ | 23/28 [00:07<00:01, 2.87it/s] 86%|████████▌ | 24/28 [00:08<00:01, 2.87it/s] 89%|████████▉ | 25/28 [00:08<00:01, 2.87it/s] 93%|█████████▎| 26/28 [00:09<00:00, 2.87it/s] 96%|█████████▋| 27/28 [00:09<00:00, 2.87it/s] 100%|██████████| 28/28 [00:09<00:00, 2.87it/s] 100%|██████████| 28/28 [00:09<00:00, 2.88it/s]
Prediction
henn0124/af1-l:447e1eddcaba74f45bd268f3546718afc63e61c8ef93f99d93d853e4afae8ca5IDpdd8qwzb89rm20cjad9b1xfbggStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- generate image in style of AF1L of a matte black diamond encrusted
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "generate image in style of AF1L of a matte black diamond encrusted", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run henn0124/af1-l using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "henn0124/af1-l:447e1eddcaba74f45bd268f3546718afc63e61c8ef93f99d93d853e4afae8ca5", { input: { model: "dev", prompt: "generate image in style of AF1L of a matte black diamond encrusted", lora_scale: 1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run henn0124/af1-l using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "henn0124/af1-l:447e1eddcaba74f45bd268f3546718afc63e61c8ef93f99d93d853e4afae8ca5", input={ "model": "dev", "prompt": "generate image in style of AF1L of a matte black diamond encrusted", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run henn0124/af1-l using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "henn0124/af1-l:447e1eddcaba74f45bd268f3546718afc63e61c8ef93f99d93d853e4afae8ca5", "input": { "model": "dev", "prompt": "generate image in style of AF1L of a matte black diamond encrusted", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-03T17:00:57.830347Z", "created_at": "2024-10-03T16:59:56.098000Z", "data_removed": false, "error": null, "id": "pdd8qwzb89rm20cjad9b1xfbgg", "input": { "model": "dev", "prompt": "generate image in style of AF1L of a matte black diamond encrusted", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 4964\nPrompt: generate image in style of AF1L of a matte black diamond encrusted\n[!] txt2img mode\nUsing dev model\nLoaded LoRAs in 0.75s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:09, 2.89it/s]\n 7%|▋ | 2/28 [00:00<00:08, 3.22it/s]\n 11%|█ | 3/28 [00:00<00:08, 3.05it/s]\n 14%|█▍ | 4/28 [00:01<00:08, 2.98it/s]\n 18%|█▊ | 5/28 [00:01<00:07, 2.95it/s]\n 21%|██▏ | 6/28 [00:02<00:07, 2.92it/s]\n 25%|██▌ | 7/28 [00:02<00:07, 2.91it/s]\n 29%|██▊ | 8/28 [00:02<00:06, 2.90it/s]\n 32%|███▏ | 9/28 [00:03<00:06, 2.89it/s]\n 36%|███▌ | 10/28 [00:03<00:06, 2.89it/s]\n 39%|███▉ | 11/28 [00:03<00:05, 2.89it/s]\n 43%|████▎ | 12/28 [00:04<00:05, 2.89it/s]\n 46%|████▋ | 13/28 [00:04<00:05, 2.88it/s]\n 50%|█████ | 14/28 [00:04<00:04, 2.88it/s]\n 54%|█████▎ | 15/28 [00:05<00:04, 2.88it/s]\n 57%|█████▋ | 16/28 [00:05<00:04, 2.88it/s]\n 61%|██████ | 17/28 [00:05<00:03, 2.88it/s]\n 64%|██████▍ | 18/28 [00:06<00:03, 2.88it/s]\n 68%|██████▊ | 19/28 [00:06<00:03, 2.88it/s]\n 71%|███████▏ | 20/28 [00:06<00:02, 2.88it/s]\n 75%|███████▌ | 21/28 [00:07<00:02, 2.88it/s]\n 79%|███████▊ | 22/28 [00:07<00:02, 2.88it/s]\n 82%|████████▏ | 23/28 [00:07<00:01, 2.88it/s]\n 86%|████████▌ | 24/28 [00:08<00:01, 2.88it/s]\n 89%|████████▉ | 25/28 [00:08<00:01, 2.88it/s]\n 93%|█████████▎| 26/28 [00:08<00:00, 2.88it/s]\n 96%|█████████▋| 27/28 [00:09<00:00, 2.88it/s]\n100%|██████████| 28/28 [00:09<00:00, 2.88it/s]\n100%|██████████| 28/28 [00:09<00:00, 2.90it/s]", "metrics": { "predict_time": 10.725069148, "total_time": 61.732347 }, "output": [ "https://replicate.delivery/yhqm/1b1L0XeBfwvWSUL56x6h6EGmrEXWwXoyfbY6aZ3Y8oUTefYcC/out-0.webp" ], "started_at": "2024-10-03T17:00:47.105278Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/pdd8qwzb89rm20cjad9b1xfbgg", "cancel": "https://api.replicate.com/v1/predictions/pdd8qwzb89rm20cjad9b1xfbgg/cancel" }, "version": "447e1eddcaba74f45bd268f3546718afc63e61c8ef93f99d93d853e4afae8ca5" }
Generated inUsing seed: 4964 Prompt: generate image in style of AF1L of a matte black diamond encrusted [!] txt2img mode Using dev model Loaded LoRAs in 0.75s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:09, 2.89it/s] 7%|▋ | 2/28 [00:00<00:08, 3.22it/s] 11%|█ | 3/28 [00:00<00:08, 3.05it/s] 14%|█▍ | 4/28 [00:01<00:08, 2.98it/s] 18%|█▊ | 5/28 [00:01<00:07, 2.95it/s] 21%|██▏ | 6/28 [00:02<00:07, 2.92it/s] 25%|██▌ | 7/28 [00:02<00:07, 2.91it/s] 29%|██▊ | 8/28 [00:02<00:06, 2.90it/s] 32%|███▏ | 9/28 [00:03<00:06, 2.89it/s] 36%|███▌ | 10/28 [00:03<00:06, 2.89it/s] 39%|███▉ | 11/28 [00:03<00:05, 2.89it/s] 43%|████▎ | 12/28 [00:04<00:05, 2.89it/s] 46%|████▋ | 13/28 [00:04<00:05, 2.88it/s] 50%|█████ | 14/28 [00:04<00:04, 2.88it/s] 54%|█████▎ | 15/28 [00:05<00:04, 2.88it/s] 57%|█████▋ | 16/28 [00:05<00:04, 2.88it/s] 61%|██████ | 17/28 [00:05<00:03, 2.88it/s] 64%|██████▍ | 18/28 [00:06<00:03, 2.88it/s] 68%|██████▊ | 19/28 [00:06<00:03, 2.88it/s] 71%|███████▏ | 20/28 [00:06<00:02, 2.88it/s] 75%|███████▌ | 21/28 [00:07<00:02, 2.88it/s] 79%|███████▊ | 22/28 [00:07<00:02, 2.88it/s] 82%|████████▏ | 23/28 [00:07<00:01, 2.88it/s] 86%|████████▌ | 24/28 [00:08<00:01, 2.88it/s] 89%|████████▉ | 25/28 [00:08<00:01, 2.88it/s] 93%|█████████▎| 26/28 [00:08<00:00, 2.88it/s] 96%|█████████▋| 27/28 [00:09<00:00, 2.88it/s] 100%|██████████| 28/28 [00:09<00:00, 2.88it/s] 100%|██████████| 28/28 [00:09<00:00, 2.90it/s]
Prediction
henn0124/af1-l:447e1eddcaba74f45bd268f3546718afc63e61c8ef93f99d93d853e4afae8ca5IDxt1q76nft9rm00cjags9fvb4ygStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- generate photograph in style of AF1L of a punk punk style low top shoe, on a slick break dance floor. colors of HEX ##00F80C and #1B3285
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "generate photograph in style of AF1L of a punk punk style low top shoe, on a slick break dance floor. colors of HEX ##00F80C and #1B3285", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run henn0124/af1-l using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "henn0124/af1-l:447e1eddcaba74f45bd268f3546718afc63e61c8ef93f99d93d853e4afae8ca5", { input: { model: "dev", prompt: "generate photograph in style of AF1L of a punk punk style low top shoe, on a slick break dance floor. colors of HEX ##00F80C and #1B3285", lora_scale: 1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run henn0124/af1-l using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "henn0124/af1-l:447e1eddcaba74f45bd268f3546718afc63e61c8ef93f99d93d853e4afae8ca5", input={ "model": "dev", "prompt": "generate photograph in style of AF1L of a punk punk style low top shoe, on a slick break dance floor. colors of HEX ##00F80C and #1B3285", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run henn0124/af1-l using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "henn0124/af1-l:447e1eddcaba74f45bd268f3546718afc63e61c8ef93f99d93d853e4afae8ca5", "input": { "model": "dev", "prompt": "generate photograph in style of AF1L of a punk punk style low top shoe, on a slick break dance floor. colors of HEX ##00F80C and #1B3285", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-03T21:04:33.401314Z", "created_at": "2024-10-03T21:04:20.946000Z", "data_removed": false, "error": null, "id": "xt1q76nft9rm00cjags9fvb4yg", "input": { "model": "dev", "prompt": "generate photograph in style of AF1L of a punk punk style low top shoe, on a slick break dance floor. colors of HEX ##00F80C and #1B3285", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 52816\nPrompt: generate photograph in style of AF1L of a punk punk style low top shoe, on a slick break dance floor. colors of HEX ##00F80C and #1B3285\n[!] txt2img mode\nUsing dev model\nfree=7116320325632\nDownloading weights\n2024-10-03T21:04:21Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmprotrngop/weights url=https://replicate.delivery/yhqm/Tir32koSx6I3JhgVkoCnOzsjxJV5wwhWfCYu0yMGsvlpeGjTA/trained_model.tar\n2024-10-03T21:04:22Z | INFO | [ Complete ] dest=/tmp/tmprotrngop/weights size=\"172 MB\" total_elapsed=1.623s url=https://replicate.delivery/yhqm/Tir32koSx6I3JhgVkoCnOzsjxJV5wwhWfCYu0yMGsvlpeGjTA/trained_model.tar\nDownloaded weights in 1.66s\nLoaded LoRAs in 2.40s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:09, 2.87it/s]\n 7%|▋ | 2/28 [00:00<00:08, 3.20it/s]\n 11%|█ | 3/28 [00:00<00:08, 3.04it/s]\n 14%|█▍ | 4/28 [00:01<00:08, 2.97it/s]\n 18%|█▊ | 5/28 [00:01<00:07, 2.94it/s]\n 21%|██▏ | 6/28 [00:02<00:07, 2.91it/s]\n 25%|██▌ | 7/28 [00:02<00:07, 2.90it/s]\n 29%|██▊ | 8/28 [00:02<00:06, 2.88it/s]\n 32%|███▏ | 9/28 [00:03<00:06, 2.89it/s]\n 36%|███▌ | 10/28 [00:03<00:06, 2.88it/s]\n 39%|███▉ | 11/28 [00:03<00:05, 2.88it/s]\n 43%|████▎ | 12/28 [00:04<00:05, 2.88it/s]\n 46%|████▋ | 13/28 [00:04<00:05, 2.88it/s]\n 50%|█████ | 14/28 [00:04<00:04, 2.88it/s]\n 54%|█████▎ | 15/28 [00:05<00:04, 2.88it/s]\n 57%|█████▋ | 16/28 [00:05<00:04, 2.88it/s]\n 61%|██████ | 17/28 [00:05<00:03, 2.88it/s]\n 64%|██████▍ | 18/28 [00:06<00:03, 2.88it/s]\n 68%|██████▊ | 19/28 [00:06<00:03, 2.88it/s]\n 71%|███████▏ | 20/28 [00:06<00:02, 2.87it/s]\n 75%|███████▌ | 21/28 [00:07<00:02, 2.87it/s]\n 79%|███████▊ | 22/28 [00:07<00:02, 2.88it/s]\n 82%|████████▏ | 23/28 [00:07<00:01, 2.88it/s]\n 86%|████████▌ | 24/28 [00:08<00:01, 2.88it/s]\n 89%|████████▉ | 25/28 [00:08<00:01, 2.88it/s]\n 93%|█████████▎| 26/28 [00:08<00:00, 2.88it/s]\n 96%|█████████▋| 27/28 [00:09<00:00, 2.88it/s]\n100%|██████████| 28/28 [00:09<00:00, 2.88it/s]\n100%|██████████| 28/28 [00:09<00:00, 2.89it/s]", "metrics": { "predict_time": 12.445415795, "total_time": 12.455314 }, "output": [ "https://replicate.delivery/yhqm/PlR8fyNVrNRpLCzeqyj2IGLrUe6iAnYxIjYiQUJeO5ZEOuMOB/out-0.webp" ], "started_at": "2024-10-03T21:04:20.955899Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/xt1q76nft9rm00cjags9fvb4yg", "cancel": "https://api.replicate.com/v1/predictions/xt1q76nft9rm00cjags9fvb4yg/cancel" }, "version": "447e1eddcaba74f45bd268f3546718afc63e61c8ef93f99d93d853e4afae8ca5" }
Generated inUsing seed: 52816 Prompt: generate photograph in style of AF1L of a punk punk style low top shoe, on a slick break dance floor. colors of HEX ##00F80C and #1B3285 [!] txt2img mode Using dev model free=7116320325632 Downloading weights 2024-10-03T21:04:21Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmprotrngop/weights url=https://replicate.delivery/yhqm/Tir32koSx6I3JhgVkoCnOzsjxJV5wwhWfCYu0yMGsvlpeGjTA/trained_model.tar 2024-10-03T21:04:22Z | INFO | [ Complete ] dest=/tmp/tmprotrngop/weights size="172 MB" total_elapsed=1.623s url=https://replicate.delivery/yhqm/Tir32koSx6I3JhgVkoCnOzsjxJV5wwhWfCYu0yMGsvlpeGjTA/trained_model.tar Downloaded weights in 1.66s Loaded LoRAs in 2.40s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:09, 2.87it/s] 7%|▋ | 2/28 [00:00<00:08, 3.20it/s] 11%|█ | 3/28 [00:00<00:08, 3.04it/s] 14%|█▍ | 4/28 [00:01<00:08, 2.97it/s] 18%|█▊ | 5/28 [00:01<00:07, 2.94it/s] 21%|██▏ | 6/28 [00:02<00:07, 2.91it/s] 25%|██▌ | 7/28 [00:02<00:07, 2.90it/s] 29%|██▊ | 8/28 [00:02<00:06, 2.88it/s] 32%|███▏ | 9/28 [00:03<00:06, 2.89it/s] 36%|███▌ | 10/28 [00:03<00:06, 2.88it/s] 39%|███▉ | 11/28 [00:03<00:05, 2.88it/s] 43%|████▎ | 12/28 [00:04<00:05, 2.88it/s] 46%|████▋ | 13/28 [00:04<00:05, 2.88it/s] 50%|█████ | 14/28 [00:04<00:04, 2.88it/s] 54%|█████▎ | 15/28 [00:05<00:04, 2.88it/s] 57%|█████▋ | 16/28 [00:05<00:04, 2.88it/s] 61%|██████ | 17/28 [00:05<00:03, 2.88it/s] 64%|██████▍ | 18/28 [00:06<00:03, 2.88it/s] 68%|██████▊ | 19/28 [00:06<00:03, 2.88it/s] 71%|███████▏ | 20/28 [00:06<00:02, 2.87it/s] 75%|███████▌ | 21/28 [00:07<00:02, 2.87it/s] 79%|███████▊ | 22/28 [00:07<00:02, 2.88it/s] 82%|████████▏ | 23/28 [00:07<00:01, 2.88it/s] 86%|████████▌ | 24/28 [00:08<00:01, 2.88it/s] 89%|████████▉ | 25/28 [00:08<00:01, 2.88it/s] 93%|█████████▎| 26/28 [00:08<00:00, 2.88it/s] 96%|█████████▋| 27/28 [00:09<00:00, 2.88it/s] 100%|██████████| 28/28 [00:09<00:00, 2.88it/s] 100%|██████████| 28/28 [00:09<00:00, 2.89it/s]
Prediction
henn0124/af1-l:447e1eddcaba74f45bd268f3546718afc63e61c8ef93f99d93d853e4afae8ca5IDm1ga0mcwnhrm00cjah28zym42rStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- generate photograph in style of AF1L of a punk punk style low top shoe, moving on a slick break dance floor. neon colors.
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "generate photograph in style of AF1L of a punk punk style low top shoe, moving on a slick break dance floor. neon colors.", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run henn0124/af1-l using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "henn0124/af1-l:447e1eddcaba74f45bd268f3546718afc63e61c8ef93f99d93d853e4afae8ca5", { input: { model: "dev", prompt: "generate photograph in style of AF1L of a punk punk style low top shoe, moving on a slick break dance floor. neon colors.", lora_scale: 1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run henn0124/af1-l using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "henn0124/af1-l:447e1eddcaba74f45bd268f3546718afc63e61c8ef93f99d93d853e4afae8ca5", input={ "model": "dev", "prompt": "generate photograph in style of AF1L of a punk punk style low top shoe, moving on a slick break dance floor. neon colors.", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run henn0124/af1-l using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "henn0124/af1-l:447e1eddcaba74f45bd268f3546718afc63e61c8ef93f99d93d853e4afae8ca5", "input": { "model": "dev", "prompt": "generate photograph in style of AF1L of a punk punk style low top shoe, moving on a slick break dance floor. neon colors.", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-03T21:24:12.408556Z", "created_at": "2024-10-03T21:23:55.692000Z", "data_removed": false, "error": null, "id": "m1ga0mcwnhrm00cjah28zym42r", "input": { "model": "dev", "prompt": "generate photograph in style of AF1L of a punk punk style low top shoe, moving on a slick break dance floor. neon colors.", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 65227\nPrompt: generate photograph in style of AF1L of a punk punk style low top shoe, moving on a slick break dance floor. neon colors.\n[!] txt2img mode\nUsing dev model\nfree=9159026405376\nDownloading weights\n2024-10-03T21:23:59Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmp5dcfxv68/weights url=https://replicate.delivery/yhqm/Tir32koSx6I3JhgVkoCnOzsjxJV5wwhWfCYu0yMGsvlpeGjTA/trained_model.tar\n2024-10-03T21:24:01Z | INFO | [ Complete ] dest=/tmp/tmp5dcfxv68/weights size=\"172 MB\" total_elapsed=2.087s url=https://replicate.delivery/yhqm/Tir32koSx6I3JhgVkoCnOzsjxJV5wwhWfCYu0yMGsvlpeGjTA/trained_model.tar\nDownloaded weights in 2.12s\nLoaded LoRAs in 2.86s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:09, 2.88it/s]\n 7%|▋ | 2/28 [00:00<00:08, 3.22it/s]\n 11%|█ | 3/28 [00:00<00:08, 3.06it/s]\n 14%|█▍ | 4/28 [00:01<00:08, 2.99it/s]\n 18%|█▊ | 5/28 [00:01<00:07, 2.95it/s]\n 21%|██▏ | 6/28 [00:02<00:07, 2.93it/s]\n 25%|██▌ | 7/28 [00:02<00:07, 2.91it/s]\n 29%|██▊ | 8/28 [00:02<00:06, 2.90it/s]\n 32%|███▏ | 9/28 [00:03<00:06, 2.90it/s]\n 36%|███▌ | 10/28 [00:03<00:06, 2.89it/s]\n 39%|███▉ | 11/28 [00:03<00:05, 2.89it/s]\n 43%|████▎ | 12/28 [00:04<00:05, 2.89it/s]\n 46%|████▋ | 13/28 [00:04<00:05, 2.89it/s]\n 50%|█████ | 14/28 [00:04<00:04, 2.89it/s]\n 54%|█████▎ | 15/28 [00:05<00:04, 2.89it/s]\n 57%|█████▋ | 16/28 [00:05<00:04, 2.89it/s]\n 61%|██████ | 17/28 [00:05<00:03, 2.89it/s]\n 64%|██████▍ | 18/28 [00:06<00:03, 2.89it/s]\n 68%|██████▊ | 19/28 [00:06<00:03, 2.88it/s]\n 71%|███████▏ | 20/28 [00:06<00:02, 2.88it/s]\n 75%|███████▌ | 21/28 [00:07<00:02, 2.88it/s]\n 79%|███████▊ | 22/28 [00:07<00:02, 2.88it/s]\n 82%|████████▏ | 23/28 [00:07<00:01, 2.88it/s]\n 86%|████████▌ | 24/28 [00:08<00:01, 2.88it/s]\n 89%|████████▉ | 25/28 [00:08<00:01, 2.88it/s]\n 93%|█████████▎| 26/28 [00:08<00:00, 2.88it/s]\n 96%|█████████▋| 27/28 [00:09<00:00, 2.88it/s]\n100%|██████████| 28/28 [00:09<00:00, 2.88it/s]\n100%|██████████| 28/28 [00:09<00:00, 2.90it/s]", "metrics": { "predict_time": 12.840519816, "total_time": 16.716556 }, "output": [ "https://replicate.delivery/yhqm/kLc7oxEYMW4KFtcXleHTuUoYeTftBc0pFEO5Z9xxrdD4rXGnA/out-0.webp" ], "started_at": "2024-10-03T21:23:59.568036Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/m1ga0mcwnhrm00cjah28zym42r", "cancel": "https://api.replicate.com/v1/predictions/m1ga0mcwnhrm00cjah28zym42r/cancel" }, "version": "447e1eddcaba74f45bd268f3546718afc63e61c8ef93f99d93d853e4afae8ca5" }
Generated inUsing seed: 65227 Prompt: generate photograph in style of AF1L of a punk punk style low top shoe, moving on a slick break dance floor. neon colors. [!] txt2img mode Using dev model free=9159026405376 Downloading weights 2024-10-03T21:23:59Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmp5dcfxv68/weights url=https://replicate.delivery/yhqm/Tir32koSx6I3JhgVkoCnOzsjxJV5wwhWfCYu0yMGsvlpeGjTA/trained_model.tar 2024-10-03T21:24:01Z | INFO | [ Complete ] dest=/tmp/tmp5dcfxv68/weights size="172 MB" total_elapsed=2.087s url=https://replicate.delivery/yhqm/Tir32koSx6I3JhgVkoCnOzsjxJV5wwhWfCYu0yMGsvlpeGjTA/trained_model.tar Downloaded weights in 2.12s Loaded LoRAs in 2.86s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:09, 2.88it/s] 7%|▋ | 2/28 [00:00<00:08, 3.22it/s] 11%|█ | 3/28 [00:00<00:08, 3.06it/s] 14%|█▍ | 4/28 [00:01<00:08, 2.99it/s] 18%|█▊ | 5/28 [00:01<00:07, 2.95it/s] 21%|██▏ | 6/28 [00:02<00:07, 2.93it/s] 25%|██▌ | 7/28 [00:02<00:07, 2.91it/s] 29%|██▊ | 8/28 [00:02<00:06, 2.90it/s] 32%|███▏ | 9/28 [00:03<00:06, 2.90it/s] 36%|███▌ | 10/28 [00:03<00:06, 2.89it/s] 39%|███▉ | 11/28 [00:03<00:05, 2.89it/s] 43%|████▎ | 12/28 [00:04<00:05, 2.89it/s] 46%|████▋ | 13/28 [00:04<00:05, 2.89it/s] 50%|█████ | 14/28 [00:04<00:04, 2.89it/s] 54%|█████▎ | 15/28 [00:05<00:04, 2.89it/s] 57%|█████▋ | 16/28 [00:05<00:04, 2.89it/s] 61%|██████ | 17/28 [00:05<00:03, 2.89it/s] 64%|██████▍ | 18/28 [00:06<00:03, 2.89it/s] 68%|██████▊ | 19/28 [00:06<00:03, 2.88it/s] 71%|███████▏ | 20/28 [00:06<00:02, 2.88it/s] 75%|███████▌ | 21/28 [00:07<00:02, 2.88it/s] 79%|███████▊ | 22/28 [00:07<00:02, 2.88it/s] 82%|████████▏ | 23/28 [00:07<00:01, 2.88it/s] 86%|████████▌ | 24/28 [00:08<00:01, 2.88it/s] 89%|████████▉ | 25/28 [00:08<00:01, 2.88it/s] 93%|█████████▎| 26/28 [00:08<00:00, 2.88it/s] 96%|█████████▋| 27/28 [00:09<00:00, 2.88it/s] 100%|██████████| 28/28 [00:09<00:00, 2.88it/s] 100%|██████████| 28/28 [00:09<00:00, 2.90it/s]
Want to make some of these yourself?
Run this model