Readme
This model doesn't have a readme.
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
import fs from "node:fs";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run hilongjw/sdxl-page using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"hilongjw/sdxl-page:0f1ef6ab8b76a9ab18c3d3d8c54d62d4969faf83fb01f2d3d0d9a62d07727695",
{
input: {
width: 512,
height: 2048,
prompt: "landing page screenshot of Nike",
refine: "no_refiner",
scheduler: "K_EULER",
lora_scale: 0.6,
num_outputs: 1,
guidance_scale: 7.5,
apply_watermark: true,
high_noise_frac: 0.8,
negative_prompt: "",
prompt_strength: 0.8,
num_inference_steps: 50
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run hilongjw/sdxl-page using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"hilongjw/sdxl-page:0f1ef6ab8b76a9ab18c3d3d8c54d62d4969faf83fb01f2d3d0d9a62d07727695",
input={
"width": 512,
"height": 2048,
"prompt": "landing page screenshot of Nike",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": True,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run hilongjw/sdxl-page using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "hilongjw/sdxl-page:0f1ef6ab8b76a9ab18c3d3d8c54d62d4969faf83fb01f2d3d0d9a62d07727695",
"input": {
"width": 512,
"height": 2048,
"prompt": "landing page screenshot of Nike",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2023-12-06T05:48:25.485564Z",
"created_at": "2023-12-06T05:48:07.856962Z",
"data_removed": false,
"error": null,
"id": "qbcnqhlbizouqnc2k3bnpkxqjm",
"input": {
"width": 512,
"height": 2048,
"prompt": "landing page screenshot of Nike",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
},
"logs": "Using seed: 48149\nEnsuring enough disk space...\nFree disk space: 2244497874944\nDownloading weights: https://replicate.delivery/pbxt/R5qB7lFtLNZxFJUFkIKX9ZDyjO6ejRA1vGE9hVffXbHkb1eHB/trained_model.tar\nb'Downloaded 186 MB bytes in 0.241s (773 MB/s)\\nExtracted 186 MB in 0.068s (2.7 GB/s)\\n'\nDownloaded weights in 0.456148624420166 seconds\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: landing page screenshot of Nike\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:13, 3.51it/s]\n 4%|▍ | 2/50 [00:00<00:13, 3.62it/s]\n 6%|▌ | 3/50 [00:00<00:12, 3.66it/s]\n 8%|▊ | 4/50 [00:01<00:12, 3.68it/s]\n 10%|█ | 5/50 [00:01<00:12, 3.69it/s]\n 12%|█▏ | 6/50 [00:01<00:11, 3.70it/s]\n 14%|█▍ | 7/50 [00:01<00:11, 3.71it/s]\n 16%|█▌ | 8/50 [00:02<00:11, 3.71it/s]\n 18%|█▊ | 9/50 [00:02<00:11, 3.71it/s]\n 20%|██ | 10/50 [00:02<00:10, 3.71it/s]\n 22%|██▏ | 11/50 [00:02<00:10, 3.71it/s]\n 24%|██▍ | 12/50 [00:03<00:10, 3.71it/s]\n 26%|██▌ | 13/50 [00:03<00:09, 3.71it/s]\n 28%|██▊ | 14/50 [00:03<00:09, 3.71it/s]\n 30%|███ | 15/50 [00:04<00:09, 3.71it/s]\n 32%|███▏ | 16/50 [00:04<00:09, 3.71it/s]\n 34%|███▍ | 17/50 [00:04<00:08, 3.71it/s]\n 36%|███▌ | 18/50 [00:04<00:08, 3.71it/s]\n 38%|███▊ | 19/50 [00:05<00:08, 3.71it/s]\n 40%|████ | 20/50 [00:05<00:08, 3.71it/s]\n 42%|████▏ | 21/50 [00:05<00:07, 3.71it/s]\n 44%|████▍ | 22/50 [00:05<00:07, 3.69it/s]\n 46%|████▌ | 23/50 [00:06<00:07, 3.70it/s]\n 48%|████▊ | 24/50 [00:06<00:07, 3.70it/s]\n 50%|█████ | 25/50 [00:06<00:06, 3.70it/s]\n 52%|█████▏ | 26/50 [00:07<00:06, 3.70it/s]\n 54%|█████▍ | 27/50 [00:07<00:06, 3.71it/s]\n 56%|█████▌ | 28/50 [00:07<00:05, 3.70it/s]\n 58%|█████▊ | 29/50 [00:07<00:05, 3.70it/s]\n 60%|██████ | 30/50 [00:08<00:05, 3.70it/s]\n 62%|██████▏ | 31/50 [00:08<00:05, 3.70it/s]\n 64%|██████▍ | 32/50 [00:08<00:04, 3.70it/s]\n 66%|██████▌ | 33/50 [00:08<00:04, 3.70it/s]\n 68%|██████▊ | 34/50 [00:09<00:04, 3.70it/s]\n 70%|███████ | 35/50 [00:09<00:04, 3.70it/s]\n 72%|███████▏ | 36/50 [00:09<00:03, 3.70it/s]\n 74%|███████▍ | 37/50 [00:09<00:03, 3.70it/s]\n 76%|███████▌ | 38/50 [00:10<00:03, 3.70it/s]\n 78%|███████▊ | 39/50 [00:10<00:02, 3.70it/s]\n 80%|████████ | 40/50 [00:10<00:02, 3.69it/s]\n 82%|████████▏ | 41/50 [00:11<00:02, 3.69it/s]\n 84%|████████▍ | 42/50 [00:11<00:02, 3.69it/s]\n 86%|████████▌ | 43/50 [00:11<00:01, 3.69it/s]\n 88%|████████▊ | 44/50 [00:11<00:01, 3.69it/s]\n 90%|█████████ | 45/50 [00:12<00:01, 3.69it/s]\n 92%|█████████▏| 46/50 [00:12<00:01, 3.69it/s]\n 94%|█████████▍| 47/50 [00:12<00:00, 3.69it/s]\n 96%|█████████▌| 48/50 [00:12<00:00, 3.69it/s]\n 98%|█████████▊| 49/50 [00:13<00:00, 3.69it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.69it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.70it/s]",
"metrics": {
"predict_time": 15.845517,
"total_time": 17.628602
},
"output": [
"https://replicate.delivery/pbxt/Qqafum31j4RlAiBRyQYuaq4rzQpArbeiblHlKmEWXwpp0bfjA/out-0.png"
],
"started_at": "2023-12-06T05:48:09.640047Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/qbcnqhlbizouqnc2k3bnpkxqjm",
"cancel": "https://api.replicate.com/v1/predictions/qbcnqhlbizouqnc2k3bnpkxqjm/cancel"
},
"version": "b8620bc9e357fa6bea42da19874b8fb97546bdaaef29c36fd8ce278848e478d9"
}
Using seed: 48149
Ensuring enough disk space...
Free disk space: 2244497874944
Downloading weights: https://replicate.delivery/pbxt/R5qB7lFtLNZxFJUFkIKX9ZDyjO6ejRA1vGE9hVffXbHkb1eHB/trained_model.tar
b'Downloaded 186 MB bytes in 0.241s (773 MB/s)\nExtracted 186 MB in 0.068s (2.7 GB/s)\n'
Downloaded weights in 0.456148624420166 seconds
Loading fine-tuned model
Does not have Unet. assume we are using LoRA
Loading Unet LoRA
Prompt: landing page screenshot of Nike
txt2img mode
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:13, 3.51it/s]
4%|▍ | 2/50 [00:00<00:13, 3.62it/s]
6%|▌ | 3/50 [00:00<00:12, 3.66it/s]
8%|▊ | 4/50 [00:01<00:12, 3.68it/s]
10%|█ | 5/50 [00:01<00:12, 3.69it/s]
12%|█▏ | 6/50 [00:01<00:11, 3.70it/s]
14%|█▍ | 7/50 [00:01<00:11, 3.71it/s]
16%|█▌ | 8/50 [00:02<00:11, 3.71it/s]
18%|█▊ | 9/50 [00:02<00:11, 3.71it/s]
20%|██ | 10/50 [00:02<00:10, 3.71it/s]
22%|██▏ | 11/50 [00:02<00:10, 3.71it/s]
24%|██▍ | 12/50 [00:03<00:10, 3.71it/s]
26%|██▌ | 13/50 [00:03<00:09, 3.71it/s]
28%|██▊ | 14/50 [00:03<00:09, 3.71it/s]
30%|███ | 15/50 [00:04<00:09, 3.71it/s]
32%|███▏ | 16/50 [00:04<00:09, 3.71it/s]
34%|███▍ | 17/50 [00:04<00:08, 3.71it/s]
36%|███▌ | 18/50 [00:04<00:08, 3.71it/s]
38%|███▊ | 19/50 [00:05<00:08, 3.71it/s]
40%|████ | 20/50 [00:05<00:08, 3.71it/s]
42%|████▏ | 21/50 [00:05<00:07, 3.71it/s]
44%|████▍ | 22/50 [00:05<00:07, 3.69it/s]
46%|████▌ | 23/50 [00:06<00:07, 3.70it/s]
48%|████▊ | 24/50 [00:06<00:07, 3.70it/s]
50%|█████ | 25/50 [00:06<00:06, 3.70it/s]
52%|█████▏ | 26/50 [00:07<00:06, 3.70it/s]
54%|█████▍ | 27/50 [00:07<00:06, 3.71it/s]
56%|█████▌ | 28/50 [00:07<00:05, 3.70it/s]
58%|█████▊ | 29/50 [00:07<00:05, 3.70it/s]
60%|██████ | 30/50 [00:08<00:05, 3.70it/s]
62%|██████▏ | 31/50 [00:08<00:05, 3.70it/s]
64%|██████▍ | 32/50 [00:08<00:04, 3.70it/s]
66%|██████▌ | 33/50 [00:08<00:04, 3.70it/s]
68%|██████▊ | 34/50 [00:09<00:04, 3.70it/s]
70%|███████ | 35/50 [00:09<00:04, 3.70it/s]
72%|███████▏ | 36/50 [00:09<00:03, 3.70it/s]
74%|███████▍ | 37/50 [00:09<00:03, 3.70it/s]
76%|███████▌ | 38/50 [00:10<00:03, 3.70it/s]
78%|███████▊ | 39/50 [00:10<00:02, 3.70it/s]
80%|████████ | 40/50 [00:10<00:02, 3.69it/s]
82%|████████▏ | 41/50 [00:11<00:02, 3.69it/s]
84%|████████▍ | 42/50 [00:11<00:02, 3.69it/s]
86%|████████▌ | 43/50 [00:11<00:01, 3.69it/s]
88%|████████▊ | 44/50 [00:11<00:01, 3.69it/s]
90%|█████████ | 45/50 [00:12<00:01, 3.69it/s]
92%|█████████▏| 46/50 [00:12<00:01, 3.69it/s]
94%|█████████▍| 47/50 [00:12<00:00, 3.69it/s]
96%|█████████▌| 48/50 [00:12<00:00, 3.69it/s]
98%|█████████▊| 49/50 [00:13<00:00, 3.69it/s]
100%|██████████| 50/50 [00:13<00:00, 3.69it/s]
100%|██████████| 50/50 [00:13<00:00, 3.70it/s]
This output was created using a different version of the model, hilongjw/sdxl-page:b8620bc9.
This model costs approximately $0.028 to run on Replicate, or 35 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.
This model runs on Nvidia L40S GPU hardware. Predictions typically complete within 29 seconds. The predict time for this model varies significantly based on the inputs.
This model doesn't have a readme.
This model is warm. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
This model costs approximately $0.028 to run on Replicate, but this varies depending on your inputs. View more.
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
Using seed: 48149
Ensuring enough disk space...
Free disk space: 2244497874944
Downloading weights: https://replicate.delivery/pbxt/R5qB7lFtLNZxFJUFkIKX9ZDyjO6ejRA1vGE9hVffXbHkb1eHB/trained_model.tar
b'Downloaded 186 MB bytes in 0.241s (773 MB/s)\nExtracted 186 MB in 0.068s (2.7 GB/s)\n'
Downloaded weights in 0.456148624420166 seconds
Loading fine-tuned model
Does not have Unet. assume we are using LoRA
Loading Unet LoRA
Prompt: landing page screenshot of Nike
txt2img mode
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:13, 3.51it/s]
4%|▍ | 2/50 [00:00<00:13, 3.62it/s]
6%|▌ | 3/50 [00:00<00:12, 3.66it/s]
8%|▊ | 4/50 [00:01<00:12, 3.68it/s]
10%|█ | 5/50 [00:01<00:12, 3.69it/s]
12%|█▏ | 6/50 [00:01<00:11, 3.70it/s]
14%|█▍ | 7/50 [00:01<00:11, 3.71it/s]
16%|█▌ | 8/50 [00:02<00:11, 3.71it/s]
18%|█▊ | 9/50 [00:02<00:11, 3.71it/s]
20%|██ | 10/50 [00:02<00:10, 3.71it/s]
22%|██▏ | 11/50 [00:02<00:10, 3.71it/s]
24%|██▍ | 12/50 [00:03<00:10, 3.71it/s]
26%|██▌ | 13/50 [00:03<00:09, 3.71it/s]
28%|██▊ | 14/50 [00:03<00:09, 3.71it/s]
30%|███ | 15/50 [00:04<00:09, 3.71it/s]
32%|███▏ | 16/50 [00:04<00:09, 3.71it/s]
34%|███▍ | 17/50 [00:04<00:08, 3.71it/s]
36%|███▌ | 18/50 [00:04<00:08, 3.71it/s]
38%|███▊ | 19/50 [00:05<00:08, 3.71it/s]
40%|████ | 20/50 [00:05<00:08, 3.71it/s]
42%|████▏ | 21/50 [00:05<00:07, 3.71it/s]
44%|████▍ | 22/50 [00:05<00:07, 3.69it/s]
46%|████▌ | 23/50 [00:06<00:07, 3.70it/s]
48%|████▊ | 24/50 [00:06<00:07, 3.70it/s]
50%|█████ | 25/50 [00:06<00:06, 3.70it/s]
52%|█████▏ | 26/50 [00:07<00:06, 3.70it/s]
54%|█████▍ | 27/50 [00:07<00:06, 3.71it/s]
56%|█████▌ | 28/50 [00:07<00:05, 3.70it/s]
58%|█████▊ | 29/50 [00:07<00:05, 3.70it/s]
60%|██████ | 30/50 [00:08<00:05, 3.70it/s]
62%|██████▏ | 31/50 [00:08<00:05, 3.70it/s]
64%|██████▍ | 32/50 [00:08<00:04, 3.70it/s]
66%|██████▌ | 33/50 [00:08<00:04, 3.70it/s]
68%|██████▊ | 34/50 [00:09<00:04, 3.70it/s]
70%|███████ | 35/50 [00:09<00:04, 3.70it/s]
72%|███████▏ | 36/50 [00:09<00:03, 3.70it/s]
74%|███████▍ | 37/50 [00:09<00:03, 3.70it/s]
76%|███████▌ | 38/50 [00:10<00:03, 3.70it/s]
78%|███████▊ | 39/50 [00:10<00:02, 3.70it/s]
80%|████████ | 40/50 [00:10<00:02, 3.69it/s]
82%|████████▏ | 41/50 [00:11<00:02, 3.69it/s]
84%|████████▍ | 42/50 [00:11<00:02, 3.69it/s]
86%|████████▌ | 43/50 [00:11<00:01, 3.69it/s]
88%|████████▊ | 44/50 [00:11<00:01, 3.69it/s]
90%|█████████ | 45/50 [00:12<00:01, 3.69it/s]
92%|█████████▏| 46/50 [00:12<00:01, 3.69it/s]
94%|█████████▍| 47/50 [00:12<00:00, 3.69it/s]
96%|█████████▌| 48/50 [00:12<00:00, 3.69it/s]
98%|█████████▊| 49/50 [00:13<00:00, 3.69it/s]
100%|██████████| 50/50 [00:13<00:00, 3.69it/s]
100%|██████████| 50/50 [00:13<00:00, 3.70it/s]