Readme
This model doesn't have a readme.
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
import fs from "node:fs";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run imagesoutofcontrol/stanidani using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"imagesoutofcontrol/stanidani:1d406563f35fe7d09f507d6b6fe1e5a785f2eda42a97a36730b7fafb92159f99",
{
input: {
width: 1824,
height: 1312,
prompt: "a portrait of StaniDani",
refine: "no_refiner",
scheduler: "K_EULER",
lora_scale: 0.6,
num_outputs: 1,
guidance_scale: 7.5,
apply_watermark: true,
high_noise_frac: 0.8,
negative_prompt: "",
prompt_strength: 0.8,
num_inference_steps: 50
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run imagesoutofcontrol/stanidani using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"imagesoutofcontrol/stanidani:1d406563f35fe7d09f507d6b6fe1e5a785f2eda42a97a36730b7fafb92159f99",
input={
"width": 1824,
"height": 1312,
"prompt": "a portrait of StaniDani",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": True,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
)
# To access the file URL:
print(output[0].url())
#=> "http://example.com"
# To write the file to disk:
with open("my-image.png", "wb") as file:
file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run imagesoutofcontrol/stanidani using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "imagesoutofcontrol/stanidani:1d406563f35fe7d09f507d6b6fe1e5a785f2eda42a97a36730b7fafb92159f99",
"input": {
"width": 1824,
"height": 1312,
"prompt": "a portrait of StaniDani",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/imagesoutofcontrol/stanidani@sha256:1d406563f35fe7d09f507d6b6fe1e5a785f2eda42a97a36730b7fafb92159f99 \
-i 'width=1824' \
-i 'height=1312' \
-i 'prompt="a portrait of StaniDani"' \
-i 'refine="no_refiner"' \
-i 'scheduler="K_EULER"' \
-i 'lora_scale=0.6' \
-i 'num_outputs=1' \
-i 'guidance_scale=7.5' \
-i 'apply_watermark=true' \
-i 'high_noise_frac=0.8' \
-i 'negative_prompt=""' \
-i 'prompt_strength=0.8' \
-i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/imagesoutofcontrol/stanidani@sha256:1d406563f35fe7d09f507d6b6fe1e5a785f2eda42a97a36730b7fafb92159f99
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 1824, "height": 1312, "prompt": "a portrait of StaniDani", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2024-05-03T13:11:16.053541Z",
"created_at": "2024-05-03T13:10:31.961000Z",
"data_removed": false,
"error": null,
"id": "y2gs7gq935rgj0cf7t9vc4r390",
"input": {
"width": 1824,
"height": 1312,
"prompt": "a portrait of StaniDani",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
},
"logs": "Using seed: 25717\nEnsuring enough disk space...\nFree disk space: 1725506011136\nDownloading weights: https://replicate.delivery/pbxt/h4LKIt4cRIqEEdctVQMZPelQdiSl8csmmHBVMDx3qGm0nUYJA/trained_model.tar\n2024-05-03T13:10:34Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/104b8b2c47a7f3fd url=https://replicate.delivery/pbxt/h4LKIt4cRIqEEdctVQMZPelQdiSl8csmmHBVMDx3qGm0nUYJA/trained_model.tar\n2024-05-03T13:10:37Z | INFO | [ Complete ] dest=/src/weights-cache/104b8b2c47a7f3fd size=\"186 MB\" total_elapsed=2.501s url=https://replicate.delivery/pbxt/h4LKIt4cRIqEEdctVQMZPelQdiSl8csmmHBVMDx3qGm0nUYJA/trained_model.tar\nb''\nDownloaded weights in 2.576716423034668 seconds\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: a portrait of <s0><s1>\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:34, 1.42it/s]\n 4%|▍ | 2/50 [00:01<00:33, 1.43it/s]\n 6%|▌ | 3/50 [00:02<00:32, 1.43it/s]\n 8%|▊ | 4/50 [00:02<00:32, 1.43it/s]\n 10%|█ | 5/50 [00:03<00:31, 1.43it/s]\n 12%|█▏ | 6/50 [00:04<00:30, 1.43it/s]\n 14%|█▍ | 7/50 [00:04<00:30, 1.43it/s]\n 16%|█▌ | 8/50 [00:05<00:29, 1.43it/s]\n 18%|█▊ | 9/50 [00:06<00:28, 1.43it/s]\n 20%|██ | 10/50 [00:07<00:28, 1.43it/s]\n 22%|██▏ | 11/50 [00:07<00:27, 1.43it/s]\n 24%|██▍ | 12/50 [00:08<00:26, 1.42it/s]\n 26%|██▌ | 13/50 [00:09<00:25, 1.42it/s]\n 28%|██▊ | 14/50 [00:09<00:25, 1.42it/s]\n 30%|███ | 15/50 [00:10<00:24, 1.42it/s]\n 32%|███▏ | 16/50 [00:11<00:23, 1.42it/s]\n 34%|███▍ | 17/50 [00:11<00:23, 1.42it/s]\n 36%|███▌ | 18/50 [00:12<00:22, 1.42it/s]\n 38%|███▊ | 19/50 [00:13<00:21, 1.42it/s]\n 40%|████ | 20/50 [00:14<00:21, 1.42it/s]\n 42%|████▏ | 21/50 [00:14<00:20, 1.42it/s]\n 44%|████▍ | 22/50 [00:15<00:19, 1.42it/s]\n 46%|████▌ | 23/50 [00:16<00:18, 1.42it/s]\n 48%|████▊ | 24/50 [00:16<00:18, 1.42it/s]\n 50%|█████ | 25/50 [00:17<00:17, 1.42it/s]\n 52%|█████▏ | 26/50 [00:18<00:16, 1.42it/s]\n 54%|█████▍ | 27/50 [00:18<00:16, 1.42it/s]\n 56%|█████▌ | 28/50 [00:19<00:15, 1.42it/s]\n 58%|█████▊ | 29/50 [00:20<00:14, 1.42it/s]\n 60%|██████ | 30/50 [00:21<00:14, 1.42it/s]\n 62%|██████▏ | 31/50 [00:21<00:13, 1.42it/s]\n 64%|██████▍ | 32/50 [00:22<00:12, 1.42it/s]\n 66%|██████▌ | 33/50 [00:23<00:11, 1.42it/s]\n 68%|██████▊ | 34/50 [00:23<00:11, 1.42it/s]\n 70%|███████ | 35/50 [00:24<00:10, 1.42it/s]\n 72%|███████▏ | 36/50 [00:25<00:09, 1.42it/s]\n 74%|███████▍ | 37/50 [00:26<00:09, 1.42it/s]\n 76%|███████▌ | 38/50 [00:26<00:08, 1.42it/s]\n 78%|███████▊ | 39/50 [00:27<00:07, 1.42it/s]\n 80%|████████ | 40/50 [00:28<00:07, 1.42it/s]\n 82%|████████▏ | 41/50 [00:28<00:06, 1.42it/s]\n 84%|████████▍ | 42/50 [00:29<00:05, 1.42it/s]\n 86%|████████▌ | 43/50 [00:30<00:04, 1.42it/s]\n 88%|████████▊ | 44/50 [00:30<00:04, 1.41it/s]\n 90%|█████████ | 45/50 [00:31<00:03, 1.42it/s]\n 92%|█████████▏| 46/50 [00:32<00:02, 1.42it/s]\n 94%|█████████▍| 47/50 [00:33<00:02, 1.42it/s]\n 96%|█████████▌| 48/50 [00:33<00:01, 1.42it/s]\n 98%|█████████▊| 49/50 [00:34<00:00, 1.42it/s]\n100%|██████████| 50/50 [00:35<00:00, 1.42it/s]\n100%|██████████| 50/50 [00:35<00:00, 1.42it/s]",
"metrics": {
"predict_time": 41.391319,
"total_time": 44.092541
},
"output": [
"https://replicate.delivery/pbxt/osrqhJro5e3jRSuXoXswhBeTBHzGdGaf9KRAaINAo2eNHlCLB/out-0.png"
],
"started_at": "2024-05-03T13:10:34.662222Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/y2gs7gq935rgj0cf7t9vc4r390",
"cancel": "https://api.replicate.com/v1/predictions/y2gs7gq935rgj0cf7t9vc4r390/cancel"
},
"version": "1d406563f35fe7d09f507d6b6fe1e5a785f2eda42a97a36730b7fafb92159f99"
}
Using seed: 25717
Ensuring enough disk space...
Free disk space: 1725506011136
Downloading weights: https://replicate.delivery/pbxt/h4LKIt4cRIqEEdctVQMZPelQdiSl8csmmHBVMDx3qGm0nUYJA/trained_model.tar
2024-05-03T13:10:34Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/104b8b2c47a7f3fd url=https://replicate.delivery/pbxt/h4LKIt4cRIqEEdctVQMZPelQdiSl8csmmHBVMDx3qGm0nUYJA/trained_model.tar
2024-05-03T13:10:37Z | INFO | [ Complete ] dest=/src/weights-cache/104b8b2c47a7f3fd size="186 MB" total_elapsed=2.501s url=https://replicate.delivery/pbxt/h4LKIt4cRIqEEdctVQMZPelQdiSl8csmmHBVMDx3qGm0nUYJA/trained_model.tar
b''
Downloaded weights in 2.576716423034668 seconds
Loading fine-tuned model
Does not have Unet. assume we are using LoRA
Loading Unet LoRA
Prompt: a portrait of <s0><s1>
txt2img mode
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:34, 1.42it/s]
4%|▍ | 2/50 [00:01<00:33, 1.43it/s]
6%|▌ | 3/50 [00:02<00:32, 1.43it/s]
8%|▊ | 4/50 [00:02<00:32, 1.43it/s]
10%|█ | 5/50 [00:03<00:31, 1.43it/s]
12%|█▏ | 6/50 [00:04<00:30, 1.43it/s]
14%|█▍ | 7/50 [00:04<00:30, 1.43it/s]
16%|█▌ | 8/50 [00:05<00:29, 1.43it/s]
18%|█▊ | 9/50 [00:06<00:28, 1.43it/s]
20%|██ | 10/50 [00:07<00:28, 1.43it/s]
22%|██▏ | 11/50 [00:07<00:27, 1.43it/s]
24%|██▍ | 12/50 [00:08<00:26, 1.42it/s]
26%|██▌ | 13/50 [00:09<00:25, 1.42it/s]
28%|██▊ | 14/50 [00:09<00:25, 1.42it/s]
30%|███ | 15/50 [00:10<00:24, 1.42it/s]
32%|███▏ | 16/50 [00:11<00:23, 1.42it/s]
34%|███▍ | 17/50 [00:11<00:23, 1.42it/s]
36%|███▌ | 18/50 [00:12<00:22, 1.42it/s]
38%|███▊ | 19/50 [00:13<00:21, 1.42it/s]
40%|████ | 20/50 [00:14<00:21, 1.42it/s]
42%|████▏ | 21/50 [00:14<00:20, 1.42it/s]
44%|████▍ | 22/50 [00:15<00:19, 1.42it/s]
46%|████▌ | 23/50 [00:16<00:18, 1.42it/s]
48%|████▊ | 24/50 [00:16<00:18, 1.42it/s]
50%|█████ | 25/50 [00:17<00:17, 1.42it/s]
52%|█████▏ | 26/50 [00:18<00:16, 1.42it/s]
54%|█████▍ | 27/50 [00:18<00:16, 1.42it/s]
56%|█████▌ | 28/50 [00:19<00:15, 1.42it/s]
58%|█████▊ | 29/50 [00:20<00:14, 1.42it/s]
60%|██████ | 30/50 [00:21<00:14, 1.42it/s]
62%|██████▏ | 31/50 [00:21<00:13, 1.42it/s]
64%|██████▍ | 32/50 [00:22<00:12, 1.42it/s]
66%|██████▌ | 33/50 [00:23<00:11, 1.42it/s]
68%|██████▊ | 34/50 [00:23<00:11, 1.42it/s]
70%|███████ | 35/50 [00:24<00:10, 1.42it/s]
72%|███████▏ | 36/50 [00:25<00:09, 1.42it/s]
74%|███████▍ | 37/50 [00:26<00:09, 1.42it/s]
76%|███████▌ | 38/50 [00:26<00:08, 1.42it/s]
78%|███████▊ | 39/50 [00:27<00:07, 1.42it/s]
80%|████████ | 40/50 [00:28<00:07, 1.42it/s]
82%|████████▏ | 41/50 [00:28<00:06, 1.42it/s]
84%|████████▍ | 42/50 [00:29<00:05, 1.42it/s]
86%|████████▌ | 43/50 [00:30<00:04, 1.42it/s]
88%|████████▊ | 44/50 [00:30<00:04, 1.41it/s]
90%|█████████ | 45/50 [00:31<00:03, 1.42it/s]
92%|█████████▏| 46/50 [00:32<00:02, 1.42it/s]
94%|█████████▍| 47/50 [00:33<00:02, 1.42it/s]
96%|█████████▌| 48/50 [00:33<00:01, 1.42it/s]
98%|█████████▊| 49/50 [00:34<00:00, 1.42it/s]
100%|██████████| 50/50 [00:35<00:00, 1.42it/s]
100%|██████████| 50/50 [00:35<00:00, 1.42it/s]
This model runs on Nvidia L40S GPU hardware. We don't yet have enough runs of this model to provide performance information.
This model doesn't have a readme.
This model is booted and ready for API calls.
This model runs on L40S hardware which costs $0.000975 per second
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
Using seed: 25717
Ensuring enough disk space...
Free disk space: 1725506011136
Downloading weights: https://replicate.delivery/pbxt/h4LKIt4cRIqEEdctVQMZPelQdiSl8csmmHBVMDx3qGm0nUYJA/trained_model.tar
2024-05-03T13:10:34Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/104b8b2c47a7f3fd url=https://replicate.delivery/pbxt/h4LKIt4cRIqEEdctVQMZPelQdiSl8csmmHBVMDx3qGm0nUYJA/trained_model.tar
2024-05-03T13:10:37Z | INFO | [ Complete ] dest=/src/weights-cache/104b8b2c47a7f3fd size="186 MB" total_elapsed=2.501s url=https://replicate.delivery/pbxt/h4LKIt4cRIqEEdctVQMZPelQdiSl8csmmHBVMDx3qGm0nUYJA/trained_model.tar
b''
Downloaded weights in 2.576716423034668 seconds
Loading fine-tuned model
Does not have Unet. assume we are using LoRA
Loading Unet LoRA
Prompt: a portrait of <s0><s1>
txt2img mode
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:34, 1.42it/s]
4%|▍ | 2/50 [00:01<00:33, 1.43it/s]
6%|▌ | 3/50 [00:02<00:32, 1.43it/s]
8%|▊ | 4/50 [00:02<00:32, 1.43it/s]
10%|█ | 5/50 [00:03<00:31, 1.43it/s]
12%|█▏ | 6/50 [00:04<00:30, 1.43it/s]
14%|█▍ | 7/50 [00:04<00:30, 1.43it/s]
16%|█▌ | 8/50 [00:05<00:29, 1.43it/s]
18%|█▊ | 9/50 [00:06<00:28, 1.43it/s]
20%|██ | 10/50 [00:07<00:28, 1.43it/s]
22%|██▏ | 11/50 [00:07<00:27, 1.43it/s]
24%|██▍ | 12/50 [00:08<00:26, 1.42it/s]
26%|██▌ | 13/50 [00:09<00:25, 1.42it/s]
28%|██▊ | 14/50 [00:09<00:25, 1.42it/s]
30%|███ | 15/50 [00:10<00:24, 1.42it/s]
32%|███▏ | 16/50 [00:11<00:23, 1.42it/s]
34%|███▍ | 17/50 [00:11<00:23, 1.42it/s]
36%|███▌ | 18/50 [00:12<00:22, 1.42it/s]
38%|███▊ | 19/50 [00:13<00:21, 1.42it/s]
40%|████ | 20/50 [00:14<00:21, 1.42it/s]
42%|████▏ | 21/50 [00:14<00:20, 1.42it/s]
44%|████▍ | 22/50 [00:15<00:19, 1.42it/s]
46%|████▌ | 23/50 [00:16<00:18, 1.42it/s]
48%|████▊ | 24/50 [00:16<00:18, 1.42it/s]
50%|█████ | 25/50 [00:17<00:17, 1.42it/s]
52%|█████▏ | 26/50 [00:18<00:16, 1.42it/s]
54%|█████▍ | 27/50 [00:18<00:16, 1.42it/s]
56%|█████▌ | 28/50 [00:19<00:15, 1.42it/s]
58%|█████▊ | 29/50 [00:20<00:14, 1.42it/s]
60%|██████ | 30/50 [00:21<00:14, 1.42it/s]
62%|██████▏ | 31/50 [00:21<00:13, 1.42it/s]
64%|██████▍ | 32/50 [00:22<00:12, 1.42it/s]
66%|██████▌ | 33/50 [00:23<00:11, 1.42it/s]
68%|██████▊ | 34/50 [00:23<00:11, 1.42it/s]
70%|███████ | 35/50 [00:24<00:10, 1.42it/s]
72%|███████▏ | 36/50 [00:25<00:09, 1.42it/s]
74%|███████▍ | 37/50 [00:26<00:09, 1.42it/s]
76%|███████▌ | 38/50 [00:26<00:08, 1.42it/s]
78%|███████▊ | 39/50 [00:27<00:07, 1.42it/s]
80%|████████ | 40/50 [00:28<00:07, 1.42it/s]
82%|████████▏ | 41/50 [00:28<00:06, 1.42it/s]
84%|████████▍ | 42/50 [00:29<00:05, 1.42it/s]
86%|████████▌ | 43/50 [00:30<00:04, 1.42it/s]
88%|████████▊ | 44/50 [00:30<00:04, 1.41it/s]
90%|█████████ | 45/50 [00:31<00:03, 1.42it/s]
92%|█████████▏| 46/50 [00:32<00:02, 1.42it/s]
94%|█████████▍| 47/50 [00:33<00:02, 1.42it/s]
96%|█████████▌| 48/50 [00:33<00:01, 1.42it/s]
98%|█████████▊| 49/50 [00:34<00:00, 1.42it/s]
100%|██████████| 50/50 [00:35<00:00, 1.42it/s]
100%|██████████| 50/50 [00:35<00:00, 1.42it/s]