jackieyaung/sd-1.5-architect-fastest
Fast and cost-efficient SD 1.5 (LCM) model for interior and architectural image generation.
Run jackieyaung/sd-1.5-architect-fastest with an API
Use one of our client libraries to get started quickly. Clicking on a library will take you to the Playground tab where you can tweak different inputs, see the results, and copy the corresponding code to use in your own project.
Input schema
The fields you can use to run this model with an API. If you don't give a value for a field its default value will be used.
| Field | Type | Default value | Description |
|---|---|---|---|
| image |
string
|
Input image for img2img
|
|
| prompt |
string
|
modern interior design, minimalist, 8k, photorealistic
|
Input prompt
|
| negative_prompt |
string
|
worst quality, low quality, normal quality, lowres, monochrome, grayscale, watermark, text, signature, bad anatomy, bad perspective
|
Negative prompt
|
| strength |
number
|
0.5
Max: 1 |
Strength of the img2img transformation (0.0 to 1.0)
|
| guidance_scale |
number
|
1.5
Min: 1 Max: 3 |
Guidance scale (CFG). For LCM, keep this low (1.0 - 2.0)
|
| num_inference_steps |
integer
|
6
Min: 2 Max: 20 |
Number of inference steps. For LCM, 4-8 is usually sufficient.
|
| seed |
integer
|
Random seed. Leave blank to randomize the seed
|
|
| output_format |
None
|
png
|
Format of the output image
|
| output_quality |
integer
|
90
Max: 100 |
Quality of the output image (0-100)
|
{
"type": "object",
"title": "Input",
"required": [
"image"
],
"properties": {
"seed": {
"type": "integer",
"title": "Seed",
"x-order": 6,
"description": "Random seed. Leave blank to randomize the seed"
},
"image": {
"type": "string",
"title": "Image",
"format": "uri",
"x-order": 0,
"description": "Input image for img2img"
},
"prompt": {
"type": "string",
"title": "Prompt",
"default": "modern interior design, minimalist, 8k, photorealistic",
"x-order": 1,
"description": "Input prompt"
},
"strength": {
"type": "number",
"title": "Strength",
"default": 0.5,
"maximum": 1,
"minimum": 0,
"x-order": 3,
"description": "Strength of the img2img transformation (0.0 to 1.0)"
},
"output_format": {
"enum": [
"webp",
"jpg",
"png"
],
"type": "string",
"title": "output_format",
"description": "Format of the output image",
"default": "png",
"x-order": 7
},
"guidance_scale": {
"type": "number",
"title": "Guidance Scale",
"default": 1.5,
"maximum": 3,
"minimum": 1,
"x-order": 4,
"description": "Guidance scale (CFG). For LCM, keep this low (1.0 - 2.0)"
},
"output_quality": {
"type": "integer",
"title": "Output Quality",
"default": 90,
"maximum": 100,
"minimum": 0,
"x-order": 8,
"description": "Quality of the output image (0-100)"
},
"negative_prompt": {
"type": "string",
"title": "Negative Prompt",
"default": "worst quality, low quality, normal quality, lowres, monochrome, grayscale, watermark, text, signature, bad anatomy, bad perspective",
"x-order": 2,
"description": "Negative prompt"
},
"num_inference_steps": {
"type": "integer",
"title": "Num Inference Steps",
"default": 6,
"maximum": 20,
"minimum": 2,
"x-order": 5,
"description": "Number of inference steps. For LCM, 4-8 is usually sufficient."
}
}
}
Output schema
The shape of the response you’ll get when you run this model with an API.
{
"type": "string",
"title": "Output",
"format": "uri"
}