Readme
This model doesn't have a readme.
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run jarvis-labs2024/console_cowboy_flux using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"jarvis-labs2024/console_cowboy_flux:53ff894d719f73dc11ca54fdb6ecf044d7d202aa30fce43236fbfda30b19ef62",
{
input: {
model: "dev",
prompt: "a man riding Tokyo cyber jet bike, retro 1990, dark background, SOK",
go_fast: false,
lora_scale: 1,
megapixels: "1",
num_outputs: 1,
aspect_ratio: "1:1",
output_format: "webp",
guidance_scale: 3.5,
output_quality: 80,
prompt_strength: 0.8,
extra_lora_scale: 1,
num_inference_steps: 28
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run jarvis-labs2024/console_cowboy_flux using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"jarvis-labs2024/console_cowboy_flux:53ff894d719f73dc11ca54fdb6ecf044d7d202aa30fce43236fbfda30b19ef62",
input={
"model": "dev",
"prompt": "a man riding Tokyo cyber jet bike, retro 1990, dark background, SOK",
"go_fast": False,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run jarvis-labs2024/console_cowboy_flux using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "53ff894d719f73dc11ca54fdb6ecf044d7d202aa30fce43236fbfda30b19ef62",
"input": {
"model": "dev",
"prompt": "a man riding Tokyo cyber jet bike, retro 1990, dark background, SOK",
"go_fast": false,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/jarvis-labs2024/console_cowboy_flux@sha256:53ff894d719f73dc11ca54fdb6ecf044d7d202aa30fce43236fbfda30b19ef62 \
-i 'model="dev"' \
-i 'prompt="a man riding Tokyo cyber jet bike, retro 1990, dark background, SOK"' \
-i 'go_fast=false' \
-i 'lora_scale=1' \
-i 'megapixels="1"' \
-i 'num_outputs=1' \
-i 'aspect_ratio="1:1"' \
-i 'output_format="webp"' \
-i 'guidance_scale=3.5' \
-i 'output_quality=80' \
-i 'prompt_strength=0.8' \
-i 'extra_lora_scale=1' \
-i 'num_inference_steps=28'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/jarvis-labs2024/console_cowboy_flux@sha256:53ff894d719f73dc11ca54fdb6ecf044d7d202aa30fce43236fbfda30b19ef62
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "model": "dev", "prompt": "a man riding Tokyo cyber jet bike, retro 1990, dark background, SOK", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
Each run costs approximately $0.038. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2024-08-18T06:11:22.689191Z",
"created_at": "2024-08-18T06:09:52.080000Z",
"data_removed": false,
"error": null,
"id": "zbynmdsvt1rm60chcgdr5bvczg",
"input": {
"model": "dev",
"prompt": "a man riding Tokyo cyber jet bike, retro 1990, dark background, SOK",
"lora_scale": 1,
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 80,
"num_inference_steps": 28
},
"logs": "Using seed: 61051\nPrompt: a man riding Tokyo cyber jet bike, retro 1990, dark background, SOK\ntxt2img mode\nUsing dev model\nLoading LoRA weights\nEnsuring enough disk space...\nFree disk space: 9487886290944\nDownloading weights\n2024-08-18T06:11:05Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/1c2344b473d069e3 url=https://replicate.delivery/yhqm/8fZlHIZUYR06Ly2iDHuQKwF2Of3ZMvVSLYAqymblfXwsAonmA/trained_model.tar\n2024-08-18T06:11:06Z | INFO | [ Complete ] dest=/src/weights-cache/1c2344b473d069e3 size=\"172 MB\" total_elapsed=1.538s url=https://replicate.delivery/yhqm/8fZlHIZUYR06Ly2iDHuQKwF2Of3ZMvVSLYAqymblfXwsAonmA/trained_model.tar\nb''\nDownloaded weights in 1.5672292709350586 seconds\nLoRA weights loaded successfully\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.69it/s]\n 7%|▋ | 2/28 [00:00<00:06, 4.24it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.96it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.85it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.79it/s]\n 21%|██▏ | 6/28 [00:01<00:05, 3.75it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.73it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.72it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.71it/s]\n 36%|███▌ | 10/28 [00:02<00:04, 3.70it/s]\n 39%|███▉ | 11/28 [00:02<00:04, 3.70it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.69it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.69it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.68it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.68it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.68it/s]\n 61%|██████ | 17/28 [00:04<00:02, 3.68it/s]\n 64%|██████▍ | 18/28 [00:04<00:02, 3.68it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.68it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.69it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.68it/s]\n 79%|███████▊ | 22/28 [00:05<00:01, 3.68it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.68it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.68it/s]\n 89%|████████▉ | 25/28 [00:06<00:00, 3.68it/s]\n 93%|█████████▎| 26/28 [00:06<00:00, 3.68it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.68it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.68it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.71it/s]",
"metrics": {
"predict_time": 17.67843601,
"total_time": 90.609191
},
"output": [
"https://replicate.delivery/yhqm/zJITaAECbYafbShZNvHrLlUa772sH9bAfueyMl1mwVAUUonmA/out-0.webp"
],
"started_at": "2024-08-18T06:11:05.010755Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/zbynmdsvt1rm60chcgdr5bvczg",
"cancel": "https://api.replicate.com/v1/predictions/zbynmdsvt1rm60chcgdr5bvczg/cancel"
},
"version": "53ff894d719f73dc11ca54fdb6ecf044d7d202aa30fce43236fbfda30b19ef62"
}
Using seed: 61051
Prompt: a man riding Tokyo cyber jet bike, retro 1990, dark background, SOK
txt2img mode
Using dev model
Loading LoRA weights
Ensuring enough disk space...
Free disk space: 9487886290944
Downloading weights
2024-08-18T06:11:05Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/1c2344b473d069e3 url=https://replicate.delivery/yhqm/8fZlHIZUYR06Ly2iDHuQKwF2Of3ZMvVSLYAqymblfXwsAonmA/trained_model.tar
2024-08-18T06:11:06Z | INFO | [ Complete ] dest=/src/weights-cache/1c2344b473d069e3 size="172 MB" total_elapsed=1.538s url=https://replicate.delivery/yhqm/8fZlHIZUYR06Ly2iDHuQKwF2Of3ZMvVSLYAqymblfXwsAonmA/trained_model.tar
b''
Downloaded weights in 1.5672292709350586 seconds
LoRA weights loaded successfully
0%| | 0/28 [00:00<?, ?it/s]
4%|▎ | 1/28 [00:00<00:07, 3.69it/s]
7%|▋ | 2/28 [00:00<00:06, 4.24it/s]
11%|█ | 3/28 [00:00<00:06, 3.96it/s]
14%|█▍ | 4/28 [00:01<00:06, 3.85it/s]
18%|█▊ | 5/28 [00:01<00:06, 3.79it/s]
21%|██▏ | 6/28 [00:01<00:05, 3.75it/s]
25%|██▌ | 7/28 [00:01<00:05, 3.73it/s]
29%|██▊ | 8/28 [00:02<00:05, 3.72it/s]
32%|███▏ | 9/28 [00:02<00:05, 3.71it/s]
36%|███▌ | 10/28 [00:02<00:04, 3.70it/s]
39%|███▉ | 11/28 [00:02<00:04, 3.70it/s]
43%|████▎ | 12/28 [00:03<00:04, 3.69it/s]
46%|████▋ | 13/28 [00:03<00:04, 3.69it/s]
50%|█████ | 14/28 [00:03<00:03, 3.68it/s]
54%|█████▎ | 15/28 [00:04<00:03, 3.68it/s]
57%|█████▋ | 16/28 [00:04<00:03, 3.68it/s]
61%|██████ | 17/28 [00:04<00:02, 3.68it/s]
64%|██████▍ | 18/28 [00:04<00:02, 3.68it/s]
68%|██████▊ | 19/28 [00:05<00:02, 3.68it/s]
71%|███████▏ | 20/28 [00:05<00:02, 3.69it/s]
75%|███████▌ | 21/28 [00:05<00:01, 3.68it/s]
79%|███████▊ | 22/28 [00:05<00:01, 3.68it/s]
82%|████████▏ | 23/28 [00:06<00:01, 3.68it/s]
86%|████████▌ | 24/28 [00:06<00:01, 3.68it/s]
89%|████████▉ | 25/28 [00:06<00:00, 3.68it/s]
93%|█████████▎| 26/28 [00:06<00:00, 3.68it/s]
96%|█████████▋| 27/28 [00:07<00:00, 3.68it/s]
100%|██████████| 28/28 [00:07<00:00, 3.68it/s]
100%|██████████| 28/28 [00:07<00:00, 3.71it/s]
This model costs approximately $0.038 to run on Replicate, or 26 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.
This model runs on Nvidia H100 GPU hardware. Predictions typically complete within 25 seconds.
This model doesn't have a readme.
This model is warm. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
Using seed: 61051
Prompt: a man riding Tokyo cyber jet bike, retro 1990, dark background, SOK
txt2img mode
Using dev model
Loading LoRA weights
Ensuring enough disk space...
Free disk space: 9487886290944
Downloading weights
2024-08-18T06:11:05Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/1c2344b473d069e3 url=https://replicate.delivery/yhqm/8fZlHIZUYR06Ly2iDHuQKwF2Of3ZMvVSLYAqymblfXwsAonmA/trained_model.tar
2024-08-18T06:11:06Z | INFO | [ Complete ] dest=/src/weights-cache/1c2344b473d069e3 size="172 MB" total_elapsed=1.538s url=https://replicate.delivery/yhqm/8fZlHIZUYR06Ly2iDHuQKwF2Of3ZMvVSLYAqymblfXwsAonmA/trained_model.tar
b''
Downloaded weights in 1.5672292709350586 seconds
LoRA weights loaded successfully
0%| | 0/28 [00:00<?, ?it/s]
4%|▎ | 1/28 [00:00<00:07, 3.69it/s]
7%|▋ | 2/28 [00:00<00:06, 4.24it/s]
11%|█ | 3/28 [00:00<00:06, 3.96it/s]
14%|█▍ | 4/28 [00:01<00:06, 3.85it/s]
18%|█▊ | 5/28 [00:01<00:06, 3.79it/s]
21%|██▏ | 6/28 [00:01<00:05, 3.75it/s]
25%|██▌ | 7/28 [00:01<00:05, 3.73it/s]
29%|██▊ | 8/28 [00:02<00:05, 3.72it/s]
32%|███▏ | 9/28 [00:02<00:05, 3.71it/s]
36%|███▌ | 10/28 [00:02<00:04, 3.70it/s]
39%|███▉ | 11/28 [00:02<00:04, 3.70it/s]
43%|████▎ | 12/28 [00:03<00:04, 3.69it/s]
46%|████▋ | 13/28 [00:03<00:04, 3.69it/s]
50%|█████ | 14/28 [00:03<00:03, 3.68it/s]
54%|█████▎ | 15/28 [00:04<00:03, 3.68it/s]
57%|█████▋ | 16/28 [00:04<00:03, 3.68it/s]
61%|██████ | 17/28 [00:04<00:02, 3.68it/s]
64%|██████▍ | 18/28 [00:04<00:02, 3.68it/s]
68%|██████▊ | 19/28 [00:05<00:02, 3.68it/s]
71%|███████▏ | 20/28 [00:05<00:02, 3.69it/s]
75%|███████▌ | 21/28 [00:05<00:01, 3.68it/s]
79%|███████▊ | 22/28 [00:05<00:01, 3.68it/s]
82%|████████▏ | 23/28 [00:06<00:01, 3.68it/s]
86%|████████▌ | 24/28 [00:06<00:01, 3.68it/s]
89%|████████▉ | 25/28 [00:06<00:00, 3.68it/s]
93%|█████████▎| 26/28 [00:06<00:00, 3.68it/s]
96%|█████████▋| 27/28 [00:07<00:00, 3.68it/s]
100%|██████████| 28/28 [00:07<00:00, 3.68it/s]
100%|██████████| 28/28 [00:07<00:00, 3.71it/s]