Readme
This model doesn't have a readme.
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
import fs from "node:fs";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run jbilcke/sdxl-cinematic-2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"jbilcke/sdxl-cinematic-2:47437c1ade41930aa63e002adbcb946a1dc8649d741de113f02a48639228c8e4",
{
input: {
width: 1024,
height: 512,
prompt: "old woman in a cafe, tense, dim light, in the style of TOK, crisp, sharp",
refine: "expert_ensemble_refiner",
scheduler: "K_EULER",
lora_scale: 0.8,
num_outputs: 1,
guidance_scale: 7.5,
apply_watermark: true,
high_noise_frac: 0.8,
negative_prompt: "extra digit, fewer digits, cropped, worst quality, low quality, glitch, deformed, mutated, ugly, disfigured",
prompt_strength: 0.8,
num_inference_steps: 70
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run jbilcke/sdxl-cinematic-2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"jbilcke/sdxl-cinematic-2:47437c1ade41930aa63e002adbcb946a1dc8649d741de113f02a48639228c8e4",
input={
"width": 1024,
"height": 512,
"prompt": "old woman in a cafe, tense, dim light, in the style of TOK, crisp, sharp",
"refine": "expert_ensemble_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.8,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": True,
"high_noise_frac": 0.8,
"negative_prompt": "extra digit, fewer digits, cropped, worst quality, low quality, glitch, deformed, mutated, ugly, disfigured",
"prompt_strength": 0.8,
"num_inference_steps": 70
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run jbilcke/sdxl-cinematic-2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "jbilcke/sdxl-cinematic-2:47437c1ade41930aa63e002adbcb946a1dc8649d741de113f02a48639228c8e4",
"input": {
"width": 1024,
"height": 512,
"prompt": "old woman in a cafe, tense, dim light, in the style of TOK, crisp, sharp",
"refine": "expert_ensemble_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.8,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "extra digit, fewer digits, cropped, worst quality, low quality, glitch, deformed, mutated, ugly, disfigured",
"prompt_strength": 0.8,
"num_inference_steps": 70
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/jbilcke/sdxl-cinematic-2@sha256:47437c1ade41930aa63e002adbcb946a1dc8649d741de113f02a48639228c8e4 \
-i 'width=1024' \
-i 'height=512' \
-i 'prompt="old woman in a cafe, tense, dim light, in the style of TOK, crisp, sharp"' \
-i 'refine="expert_ensemble_refiner"' \
-i 'scheduler="K_EULER"' \
-i 'lora_scale=0.8' \
-i 'num_outputs=1' \
-i 'guidance_scale=7.5' \
-i 'apply_watermark=true' \
-i 'high_noise_frac=0.8' \
-i 'negative_prompt="extra digit, fewer digits, cropped, worst quality, low quality, glitch, deformed, mutated, ugly, disfigured"' \
-i 'prompt_strength=0.8' \
-i 'num_inference_steps=70'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/jbilcke/sdxl-cinematic-2@sha256:47437c1ade41930aa63e002adbcb946a1dc8649d741de113f02a48639228c8e4
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 1024, "height": 512, "prompt": "old woman in a cafe, tense, dim light, in the style of TOK, crisp, sharp", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.8, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "extra digit, fewer digits, cropped, worst quality, low quality, glitch, deformed, mutated, ugly, disfigured", "prompt_strength": 0.8, "num_inference_steps": 70 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
Each run costs approximately $0.014. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2023-10-14T22:38:09.568247Z",
"created_at": "2023-10-14T22:37:58.429324Z",
"data_removed": false,
"error": null,
"id": "d6i6qk3baxwc2rwb4kzge55soe",
"input": {
"width": 1024,
"height": 512,
"prompt": "old woman in a cafe, tense, dim light, in the style of TOK, crisp, sharp",
"refine": "expert_ensemble_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.8,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "extra digit, fewer digits, cropped, worst quality, low quality, glitch, deformed, mutated, ugly, disfigured",
"prompt_strength": 0.8,
"num_inference_steps": 70
},
"logs": "Using seed: 5251\nPrompt: old woman in a cafe, tense, dim light, in the style of <s0><s1>, crisp, sharp\ntxt2img mode\n 0%| | 0/55 [00:00<?, ?it/s]\n 2%|▏ | 1/55 [00:00<00:07, 7.08it/s]\n 4%|▎ | 2/55 [00:00<00:07, 7.03it/s]\n 5%|▌ | 3/55 [00:00<00:07, 7.02it/s]\n 7%|▋ | 4/55 [00:00<00:07, 7.01it/s]\n 9%|▉ | 5/55 [00:00<00:07, 7.02it/s]\n 11%|█ | 6/55 [00:00<00:06, 7.02it/s]\n 13%|█▎ | 7/55 [00:00<00:06, 7.03it/s]\n 15%|█▍ | 8/55 [00:01<00:06, 7.04it/s]\n 16%|█▋ | 9/55 [00:01<00:06, 7.04it/s]\n 18%|█▊ | 10/55 [00:01<00:06, 7.04it/s]\n 20%|██ | 11/55 [00:01<00:06, 7.03it/s]\n 22%|██▏ | 12/55 [00:01<00:06, 7.03it/s]\n 24%|██▎ | 13/55 [00:01<00:05, 7.04it/s]\n 25%|██▌ | 14/55 [00:01<00:05, 7.04it/s]\n 27%|██▋ | 15/55 [00:02<00:05, 7.04it/s]\n 29%|██▉ | 16/55 [00:02<00:05, 7.05it/s]\n 31%|███ | 17/55 [00:02<00:05, 7.05it/s]\n 33%|███▎ | 18/55 [00:02<00:05, 7.05it/s]\n 35%|███▍ | 19/55 [00:02<00:05, 7.04it/s]\n 36%|███▋ | 20/55 [00:02<00:04, 7.04it/s]\n 38%|███▊ | 21/55 [00:02<00:04, 7.03it/s]\n 40%|████ | 22/55 [00:03<00:04, 7.03it/s]\n 42%|████▏ | 23/55 [00:03<00:04, 7.03it/s]\n 44%|████▎ | 24/55 [00:03<00:04, 7.04it/s]\n 45%|████▌ | 25/55 [00:03<00:04, 7.04it/s]\n 47%|████▋ | 26/55 [00:03<00:04, 7.04it/s]\n 49%|████▉ | 27/55 [00:03<00:03, 7.04it/s]\n 51%|█████ | 28/55 [00:03<00:03, 7.04it/s]\n 53%|█████▎ | 29/55 [00:04<00:03, 7.03it/s]\n 55%|█████▍ | 30/55 [00:04<00:03, 7.03it/s]\n 56%|█████▋ | 31/55 [00:04<00:03, 7.03it/s]\n 58%|█████▊ | 32/55 [00:04<00:03, 7.03it/s]\n 60%|██████ | 33/55 [00:04<00:03, 7.03it/s]\n 62%|██████▏ | 34/55 [00:04<00:02, 7.03it/s]\n 64%|██████▎ | 35/55 [00:04<00:02, 7.02it/s]\n 65%|██████▌ | 36/55 [00:05<00:02, 7.03it/s]\n 67%|██████▋ | 37/55 [00:05<00:02, 7.03it/s]\n 69%|██████▉ | 38/55 [00:05<00:02, 7.03it/s]\n 71%|███████ | 39/55 [00:05<00:02, 7.03it/s]\n 73%|███████▎ | 40/55 [00:05<00:02, 7.02it/s]\n 75%|███████▍ | 41/55 [00:05<00:01, 7.02it/s]\n 76%|███████▋ | 42/55 [00:05<00:01, 7.01it/s]\n 78%|███████▊ | 43/55 [00:06<00:01, 7.01it/s]\n 80%|████████ | 44/55 [00:06<00:01, 7.01it/s]\n 82%|████████▏ | 45/55 [00:06<00:01, 7.01it/s]\n 84%|████████▎ | 46/55 [00:06<00:01, 7.01it/s]\n 85%|████████▌ | 47/55 [00:06<00:01, 7.00it/s]\n 87%|████████▋ | 48/55 [00:06<00:00, 7.01it/s]\n 89%|████████▉ | 49/55 [00:06<00:00, 7.02it/s]\n 91%|█████████ | 50/55 [00:07<00:00, 7.02it/s]\n 93%|█████████▎| 51/55 [00:07<00:00, 7.01it/s]\n 95%|█████████▍| 52/55 [00:07<00:00, 7.01it/s]\n 96%|█████████▋| 53/55 [00:07<00:00, 7.01it/s]\n 98%|█████████▊| 54/55 [00:07<00:00, 7.00it/s]\n100%|██████████| 55/55 [00:07<00:00, 6.99it/s]\n100%|██████████| 55/55 [00:07<00:00, 7.03it/s]\n 0%| | 0/15 [00:00<?, ?it/s]\n 7%|▋ | 1/15 [00:00<00:01, 8.61it/s]\n 13%|█▎ | 2/15 [00:00<00:01, 8.53it/s]\n 20%|██ | 3/15 [00:00<00:01, 8.51it/s]\n 27%|██▋ | 4/15 [00:00<00:01, 8.48it/s]\n 33%|███▎ | 5/15 [00:00<00:01, 8.48it/s]\n 40%|████ | 6/15 [00:00<00:01, 8.48it/s]\n 47%|████▋ | 7/15 [00:00<00:00, 8.49it/s]\n 53%|█████▎ | 8/15 [00:00<00:00, 8.50it/s]\n 60%|██████ | 9/15 [00:01<00:00, 8.48it/s]\n 67%|██████▋ | 10/15 [00:01<00:00, 8.49it/s]\n 73%|███████▎ | 11/15 [00:01<00:00, 8.48it/s]\n 80%|████████ | 12/15 [00:01<00:00, 8.47it/s]\n 87%|████████▋ | 13/15 [00:01<00:00, 8.46it/s]\n 93%|█████████▎| 14/15 [00:01<00:00, 8.47it/s]\n100%|██████████| 15/15 [00:01<00:00, 8.47it/s]\n100%|██████████| 15/15 [00:01<00:00, 8.48it/s]",
"metrics": {
"predict_time": 11.136675,
"total_time": 11.138923
},
"output": [
"https://pbxt.replicate.delivery/YdHrM2UqAWIGIhGqmIKGqBhLwWDMJeRNdnqypxef5HqgSZcjA/out-0.png"
],
"started_at": "2023-10-14T22:37:58.431572Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/d6i6qk3baxwc2rwb4kzge55soe",
"cancel": "https://api.replicate.com/v1/predictions/d6i6qk3baxwc2rwb4kzge55soe/cancel"
},
"version": "47437c1ade41930aa63e002adbcb946a1dc8649d741de113f02a48639228c8e4"
}
Using seed: 5251
Prompt: old woman in a cafe, tense, dim light, in the style of <s0><s1>, crisp, sharp
txt2img mode
0%| | 0/55 [00:00<?, ?it/s]
2%|▏ | 1/55 [00:00<00:07, 7.08it/s]
4%|▎ | 2/55 [00:00<00:07, 7.03it/s]
5%|▌ | 3/55 [00:00<00:07, 7.02it/s]
7%|▋ | 4/55 [00:00<00:07, 7.01it/s]
9%|▉ | 5/55 [00:00<00:07, 7.02it/s]
11%|█ | 6/55 [00:00<00:06, 7.02it/s]
13%|█▎ | 7/55 [00:00<00:06, 7.03it/s]
15%|█▍ | 8/55 [00:01<00:06, 7.04it/s]
16%|█▋ | 9/55 [00:01<00:06, 7.04it/s]
18%|█▊ | 10/55 [00:01<00:06, 7.04it/s]
20%|██ | 11/55 [00:01<00:06, 7.03it/s]
22%|██▏ | 12/55 [00:01<00:06, 7.03it/s]
24%|██▎ | 13/55 [00:01<00:05, 7.04it/s]
25%|██▌ | 14/55 [00:01<00:05, 7.04it/s]
27%|██▋ | 15/55 [00:02<00:05, 7.04it/s]
29%|██▉ | 16/55 [00:02<00:05, 7.05it/s]
31%|███ | 17/55 [00:02<00:05, 7.05it/s]
33%|███▎ | 18/55 [00:02<00:05, 7.05it/s]
35%|███▍ | 19/55 [00:02<00:05, 7.04it/s]
36%|███▋ | 20/55 [00:02<00:04, 7.04it/s]
38%|███▊ | 21/55 [00:02<00:04, 7.03it/s]
40%|████ | 22/55 [00:03<00:04, 7.03it/s]
42%|████▏ | 23/55 [00:03<00:04, 7.03it/s]
44%|████▎ | 24/55 [00:03<00:04, 7.04it/s]
45%|████▌ | 25/55 [00:03<00:04, 7.04it/s]
47%|████▋ | 26/55 [00:03<00:04, 7.04it/s]
49%|████▉ | 27/55 [00:03<00:03, 7.04it/s]
51%|█████ | 28/55 [00:03<00:03, 7.04it/s]
53%|█████▎ | 29/55 [00:04<00:03, 7.03it/s]
55%|█████▍ | 30/55 [00:04<00:03, 7.03it/s]
56%|█████▋ | 31/55 [00:04<00:03, 7.03it/s]
58%|█████▊ | 32/55 [00:04<00:03, 7.03it/s]
60%|██████ | 33/55 [00:04<00:03, 7.03it/s]
62%|██████▏ | 34/55 [00:04<00:02, 7.03it/s]
64%|██████▎ | 35/55 [00:04<00:02, 7.02it/s]
65%|██████▌ | 36/55 [00:05<00:02, 7.03it/s]
67%|██████▋ | 37/55 [00:05<00:02, 7.03it/s]
69%|██████▉ | 38/55 [00:05<00:02, 7.03it/s]
71%|███████ | 39/55 [00:05<00:02, 7.03it/s]
73%|███████▎ | 40/55 [00:05<00:02, 7.02it/s]
75%|███████▍ | 41/55 [00:05<00:01, 7.02it/s]
76%|███████▋ | 42/55 [00:05<00:01, 7.01it/s]
78%|███████▊ | 43/55 [00:06<00:01, 7.01it/s]
80%|████████ | 44/55 [00:06<00:01, 7.01it/s]
82%|████████▏ | 45/55 [00:06<00:01, 7.01it/s]
84%|████████▎ | 46/55 [00:06<00:01, 7.01it/s]
85%|████████▌ | 47/55 [00:06<00:01, 7.00it/s]
87%|████████▋ | 48/55 [00:06<00:00, 7.01it/s]
89%|████████▉ | 49/55 [00:06<00:00, 7.02it/s]
91%|█████████ | 50/55 [00:07<00:00, 7.02it/s]
93%|█████████▎| 51/55 [00:07<00:00, 7.01it/s]
95%|█████████▍| 52/55 [00:07<00:00, 7.01it/s]
96%|█████████▋| 53/55 [00:07<00:00, 7.01it/s]
98%|█████████▊| 54/55 [00:07<00:00, 7.00it/s]
100%|██████████| 55/55 [00:07<00:00, 6.99it/s]
100%|██████████| 55/55 [00:07<00:00, 7.03it/s]
0%| | 0/15 [00:00<?, ?it/s]
7%|▋ | 1/15 [00:00<00:01, 8.61it/s]
13%|█▎ | 2/15 [00:00<00:01, 8.53it/s]
20%|██ | 3/15 [00:00<00:01, 8.51it/s]
27%|██▋ | 4/15 [00:00<00:01, 8.48it/s]
33%|███▎ | 5/15 [00:00<00:01, 8.48it/s]
40%|████ | 6/15 [00:00<00:01, 8.48it/s]
47%|████▋ | 7/15 [00:00<00:00, 8.49it/s]
53%|█████▎ | 8/15 [00:00<00:00, 8.50it/s]
60%|██████ | 9/15 [00:01<00:00, 8.48it/s]
67%|██████▋ | 10/15 [00:01<00:00, 8.49it/s]
73%|███████▎ | 11/15 [00:01<00:00, 8.48it/s]
80%|████████ | 12/15 [00:01<00:00, 8.47it/s]
87%|████████▋ | 13/15 [00:01<00:00, 8.46it/s]
93%|█████████▎| 14/15 [00:01<00:00, 8.47it/s]
100%|██████████| 15/15 [00:01<00:00, 8.47it/s]
100%|██████████| 15/15 [00:01<00:00, 8.48it/s]
This model costs approximately $0.014 to run on Replicate, or 71 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.
This model runs on Nvidia L40S GPU hardware. Predictions typically complete within 15 seconds.
This model doesn't have a readme.
This model is warm. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
This model costs approximately $0.014 to run on Replicate, but this varies depending on your inputs. View more.
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
Using seed: 5251
Prompt: old woman in a cafe, tense, dim light, in the style of <s0><s1>, crisp, sharp
txt2img mode
0%| | 0/55 [00:00<?, ?it/s]
2%|▏ | 1/55 [00:00<00:07, 7.08it/s]
4%|▎ | 2/55 [00:00<00:07, 7.03it/s]
5%|▌ | 3/55 [00:00<00:07, 7.02it/s]
7%|▋ | 4/55 [00:00<00:07, 7.01it/s]
9%|▉ | 5/55 [00:00<00:07, 7.02it/s]
11%|█ | 6/55 [00:00<00:06, 7.02it/s]
13%|█▎ | 7/55 [00:00<00:06, 7.03it/s]
15%|█▍ | 8/55 [00:01<00:06, 7.04it/s]
16%|█▋ | 9/55 [00:01<00:06, 7.04it/s]
18%|█▊ | 10/55 [00:01<00:06, 7.04it/s]
20%|██ | 11/55 [00:01<00:06, 7.03it/s]
22%|██▏ | 12/55 [00:01<00:06, 7.03it/s]
24%|██▎ | 13/55 [00:01<00:05, 7.04it/s]
25%|██▌ | 14/55 [00:01<00:05, 7.04it/s]
27%|██▋ | 15/55 [00:02<00:05, 7.04it/s]
29%|██▉ | 16/55 [00:02<00:05, 7.05it/s]
31%|███ | 17/55 [00:02<00:05, 7.05it/s]
33%|███▎ | 18/55 [00:02<00:05, 7.05it/s]
35%|███▍ | 19/55 [00:02<00:05, 7.04it/s]
36%|███▋ | 20/55 [00:02<00:04, 7.04it/s]
38%|███▊ | 21/55 [00:02<00:04, 7.03it/s]
40%|████ | 22/55 [00:03<00:04, 7.03it/s]
42%|████▏ | 23/55 [00:03<00:04, 7.03it/s]
44%|████▎ | 24/55 [00:03<00:04, 7.04it/s]
45%|████▌ | 25/55 [00:03<00:04, 7.04it/s]
47%|████▋ | 26/55 [00:03<00:04, 7.04it/s]
49%|████▉ | 27/55 [00:03<00:03, 7.04it/s]
51%|█████ | 28/55 [00:03<00:03, 7.04it/s]
53%|█████▎ | 29/55 [00:04<00:03, 7.03it/s]
55%|█████▍ | 30/55 [00:04<00:03, 7.03it/s]
56%|█████▋ | 31/55 [00:04<00:03, 7.03it/s]
58%|█████▊ | 32/55 [00:04<00:03, 7.03it/s]
60%|██████ | 33/55 [00:04<00:03, 7.03it/s]
62%|██████▏ | 34/55 [00:04<00:02, 7.03it/s]
64%|██████▎ | 35/55 [00:04<00:02, 7.02it/s]
65%|██████▌ | 36/55 [00:05<00:02, 7.03it/s]
67%|██████▋ | 37/55 [00:05<00:02, 7.03it/s]
69%|██████▉ | 38/55 [00:05<00:02, 7.03it/s]
71%|███████ | 39/55 [00:05<00:02, 7.03it/s]
73%|███████▎ | 40/55 [00:05<00:02, 7.02it/s]
75%|███████▍ | 41/55 [00:05<00:01, 7.02it/s]
76%|███████▋ | 42/55 [00:05<00:01, 7.01it/s]
78%|███████▊ | 43/55 [00:06<00:01, 7.01it/s]
80%|████████ | 44/55 [00:06<00:01, 7.01it/s]
82%|████████▏ | 45/55 [00:06<00:01, 7.01it/s]
84%|████████▎ | 46/55 [00:06<00:01, 7.01it/s]
85%|████████▌ | 47/55 [00:06<00:01, 7.00it/s]
87%|████████▋ | 48/55 [00:06<00:00, 7.01it/s]
89%|████████▉ | 49/55 [00:06<00:00, 7.02it/s]
91%|█████████ | 50/55 [00:07<00:00, 7.02it/s]
93%|█████████▎| 51/55 [00:07<00:00, 7.01it/s]
95%|█████████▍| 52/55 [00:07<00:00, 7.01it/s]
96%|█████████▋| 53/55 [00:07<00:00, 7.01it/s]
98%|█████████▊| 54/55 [00:07<00:00, 7.00it/s]
100%|██████████| 55/55 [00:07<00:00, 6.99it/s]
100%|██████████| 55/55 [00:07<00:00, 7.03it/s]
0%| | 0/15 [00:00<?, ?it/s]
7%|▋ | 1/15 [00:00<00:01, 8.61it/s]
13%|█▎ | 2/15 [00:00<00:01, 8.53it/s]
20%|██ | 3/15 [00:00<00:01, 8.51it/s]
27%|██▋ | 4/15 [00:00<00:01, 8.48it/s]
33%|███▎ | 5/15 [00:00<00:01, 8.48it/s]
40%|████ | 6/15 [00:00<00:01, 8.48it/s]
47%|████▋ | 7/15 [00:00<00:00, 8.49it/s]
53%|█████▎ | 8/15 [00:00<00:00, 8.50it/s]
60%|██████ | 9/15 [00:01<00:00, 8.48it/s]
67%|██████▋ | 10/15 [00:01<00:00, 8.49it/s]
73%|███████▎ | 11/15 [00:01<00:00, 8.48it/s]
80%|████████ | 12/15 [00:01<00:00, 8.47it/s]
87%|████████▋ | 13/15 [00:01<00:00, 8.46it/s]
93%|█████████▎| 14/15 [00:01<00:00, 8.47it/s]
100%|██████████| 15/15 [00:01<00:00, 8.47it/s]
100%|██████████| 15/15 [00:01<00:00, 8.48it/s]