jfals82 / mason_zoom
(Updated 9 months ago)
- Public
- 30 runs
- SDXL fine-tune
Prediction
jfals82/mason_zoom:8131e0bdda244be92efcefa91d45450d950a2cafa0234f35ee753bf086f9db72IDfncbc2729drgp0chzjttxkgzarStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- TOK, wearing a birthday hat and holding a bunny
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.6
- num_outputs
- 1
- guidance_scale
- 10
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- hair
- prompt_strength
- 0.75
- num_inference_steps
- 200
{ "width": 1024, "height": 1024, "prompt": "TOK, wearing a birthday hat and holding a bunny", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 10, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "hair", "prompt_strength": 0.75, "num_inference_steps": 200 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run jfals82/mason_zoom using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "jfals82/mason_zoom:8131e0bdda244be92efcefa91d45450d950a2cafa0234f35ee753bf086f9db72", { input: { width: 1024, height: 1024, prompt: "TOK, wearing a birthday hat and holding a bunny", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.6, num_outputs: 1, guidance_scale: 10, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "hair", prompt_strength: 0.75, num_inference_steps: 200 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run jfals82/mason_zoom using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "jfals82/mason_zoom:8131e0bdda244be92efcefa91d45450d950a2cafa0234f35ee753bf086f9db72", input={ "width": 1024, "height": 1024, "prompt": "TOK, wearing a birthday hat and holding a bunny", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 10, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "hair", "prompt_strength": 0.75, "num_inference_steps": 200 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run jfals82/mason_zoom using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "jfals82/mason_zoom:8131e0bdda244be92efcefa91d45450d950a2cafa0234f35ee753bf086f9db72", "input": { "width": 1024, "height": 1024, "prompt": "TOK, wearing a birthday hat and holding a bunny", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 10, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "hair", "prompt_strength": 0.75, "num_inference_steps": 200 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-16T21:21:58.356971Z", "created_at": "2024-09-16T21:21:04.075000Z", "data_removed": false, "error": null, "id": "fncbc2729drgp0chzjttxkgzar", "input": { "width": 1024, "height": 1024, "prompt": "TOK, wearing a birthday hat and holding a bunny", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 10, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "hair", "prompt_strength": 0.75, "num_inference_steps": 200 }, "logs": "Using seed: 46420\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: <s0><s1>, wearing a birthday hat and holding a bunny\ntxt2img mode\n 0%| | 0/200 [00:00<?, ?it/s]\n 0%| | 1/200 [00:00<00:46, 4.31it/s]\n 1%| | 2/200 [00:00<00:46, 4.28it/s]\n 2%|▏ | 3/200 [00:00<00:46, 4.27it/s]\n 2%|▏ | 4/200 [00:00<00:45, 4.27it/s]\n 2%|▎ | 5/200 [00:01<00:45, 4.27it/s]\n 3%|▎ | 6/200 [00:01<00:45, 4.27it/s]\n 4%|▎ | 7/200 [00:01<00:45, 4.27it/s]\n 4%|▍ | 8/200 [00:01<00:45, 4.26it/s]\n 4%|▍ | 9/200 [00:02<00:44, 4.26it/s]\n 5%|▌ | 10/200 [00:02<00:44, 4.26it/s]\n 6%|▌ | 11/200 [00:02<00:44, 4.26it/s]\n 6%|▌ | 12/200 [00:02<00:44, 4.26it/s]\n 6%|▋ | 13/200 [00:03<00:43, 4.26it/s]\n 7%|▋ | 14/200 [00:03<00:43, 4.26it/s]\n 8%|▊ | 15/200 [00:03<00:43, 4.26it/s]\n 8%|▊ | 16/200 [00:03<00:43, 4.26it/s]\n 8%|▊ | 17/200 [00:03<00:43, 4.25it/s]\n 9%|▉ | 18/200 [00:04<00:42, 4.25it/s]\n 10%|▉ | 19/200 [00:04<00:42, 4.25it/s]\n 10%|█ | 20/200 [00:04<00:42, 4.25it/s]\n 10%|█ | 21/200 [00:04<00:42, 4.25it/s]\n 11%|█ | 22/200 [00:05<00:41, 4.24it/s]\n 12%|█▏ | 23/200 [00:05<00:41, 4.24it/s]\n 12%|█▏ | 24/200 [00:05<00:41, 4.24it/s]\n 12%|█▎ | 25/200 [00:05<00:41, 4.24it/s]\n 13%|█▎ | 26/200 [00:06<00:41, 4.24it/s]\n 14%|█▎ | 27/200 [00:06<00:40, 4.24it/s]\n 14%|█▍ | 28/200 [00:06<00:40, 4.24it/s]\n 14%|█▍ | 29/200 [00:06<00:40, 4.24it/s]\n 15%|█▌ | 30/200 [00:07<00:40, 4.24it/s]\n 16%|█▌ | 31/200 [00:07<00:39, 4.24it/s]\n 16%|█▌ | 32/200 [00:07<00:39, 4.24it/s]\n 16%|█▋ | 33/200 [00:07<00:39, 4.24it/s]\n 17%|█▋ | 34/200 [00:07<00:39, 4.24it/s]\n 18%|█▊ | 35/200 [00:08<00:38, 4.24it/s]\n 18%|█▊ | 36/200 [00:08<00:38, 4.24it/s]\n 18%|█▊ | 37/200 [00:08<00:38, 4.25it/s]\n 19%|█▉ | 38/200 [00:08<00:38, 4.26it/s]\n 20%|█▉ | 39/200 [00:09<00:37, 4.26it/s]\n 20%|██ | 40/200 [00:09<00:37, 4.26it/s]\n 20%|██ | 41/200 [00:09<00:37, 4.26it/s]\n 21%|██ | 42/200 [00:09<00:37, 4.26it/s]\n 22%|██▏ | 43/200 [00:10<00:36, 4.26it/s]\n 22%|██▏ | 44/200 [00:10<00:36, 4.26it/s]\n 22%|██▎ | 45/200 [00:10<00:36, 4.26it/s]\n 23%|██▎ | 46/200 [00:10<00:36, 4.26it/s]\n 24%|██▎ | 47/200 [00:11<00:35, 4.26it/s]\n 24%|██▍ | 48/200 [00:11<00:35, 4.26it/s]\n 24%|██▍ | 49/200 [00:11<00:35, 4.26it/s]\n 25%|██▌ | 50/200 [00:11<00:35, 4.26it/s]\n 26%|██▌ | 51/200 [00:11<00:35, 4.26it/s]\n 26%|██▌ | 52/200 [00:12<00:34, 4.25it/s]\n 26%|██▋ | 53/200 [00:12<00:34, 4.25it/s]\n 27%|██▋ | 54/200 [00:12<00:34, 4.25it/s]\n 28%|██▊ | 55/200 [00:12<00:34, 4.25it/s]\n 28%|██▊ | 56/200 [00:13<00:33, 4.25it/s]\n 28%|██▊ | 57/200 [00:13<00:33, 4.25it/s]\n 29%|██▉ | 58/200 [00:13<00:33, 4.26it/s]\n 30%|██▉ | 59/200 [00:13<00:33, 4.26it/s]\n 30%|███ | 60/200 [00:14<00:32, 4.26it/s]\n 30%|███ | 61/200 [00:14<00:32, 4.26it/s]\n 31%|███ | 62/200 [00:14<00:32, 4.26it/s]\n 32%|███▏ | 63/200 [00:14<00:32, 4.26it/s]\n 32%|███▏ | 64/200 [00:15<00:31, 4.26it/s]\n 32%|███▎ | 65/200 [00:15<00:31, 4.25it/s]\n 33%|███▎ | 66/200 [00:15<00:31, 4.25it/s]\n 34%|███▎ | 67/200 [00:15<00:31, 4.26it/s]\n 34%|███▍ | 68/200 [00:15<00:31, 4.26it/s]\n 34%|███▍ | 69/200 [00:16<00:30, 4.26it/s]\n 35%|███▌ | 70/200 [00:16<00:30, 4.25it/s]\n 36%|███▌ | 71/200 [00:16<00:30, 4.26it/s]\n 36%|███▌ | 72/200 [00:16<00:30, 4.26it/s]\n 36%|███▋ | 73/200 [00:17<00:29, 4.25it/s]\n 37%|███▋ | 74/200 [00:17<00:29, 4.25it/s]\n 38%|███▊ | 75/200 [00:17<00:29, 4.25it/s]\n 38%|███▊ | 76/200 [00:17<00:29, 4.25it/s]\n 38%|███▊ | 77/200 [00:18<00:28, 4.25it/s]\n 39%|███▉ | 78/200 [00:18<00:28, 4.25it/s]\n 40%|███▉ | 79/200 [00:18<00:28, 4.25it/s]\n 40%|████ | 80/200 [00:18<00:28, 4.25it/s]\n 40%|████ | 81/200 [00:19<00:28, 4.24it/s]\n 41%|████ | 82/200 [00:19<00:27, 4.24it/s]\n 42%|████▏ | 83/200 [00:19<00:27, 4.25it/s]\n 42%|████▏ | 84/200 [00:19<00:27, 4.25it/s]\n 42%|████▎ | 85/200 [00:19<00:27, 4.25it/s]\n 43%|████▎ | 86/200 [00:20<00:26, 4.25it/s]\n 44%|████▎ | 87/200 [00:20<00:26, 4.24it/s]\n 44%|████▍ | 88/200 [00:20<00:26, 4.24it/s]\n 44%|████▍ | 89/200 [00:20<00:26, 4.24it/s]\n 45%|████▌ | 90/200 [00:21<00:25, 4.24it/s]\n 46%|████▌ | 91/200 [00:21<00:25, 4.24it/s]\n 46%|████▌ | 92/200 [00:21<00:25, 4.24it/s]\n 46%|████▋ | 93/200 [00:21<00:25, 4.24it/s]\n 47%|████▋ | 94/200 [00:22<00:24, 4.24it/s]\n 48%|████▊ | 95/200 [00:22<00:24, 4.24it/s]\n 48%|████▊ | 96/200 [00:22<00:24, 4.24it/s]\n 48%|████▊ | 97/200 [00:22<00:24, 4.24it/s]\n 49%|████▉ | 98/200 [00:23<00:24, 4.24it/s]\n 50%|████▉ | 99/200 [00:23<00:23, 4.24it/s]\n 50%|█████ | 100/200 [00:23<00:23, 4.23it/s]\n 50%|█████ | 101/200 [00:23<00:23, 4.23it/s]\n 51%|█████ | 102/200 [00:23<00:23, 4.24it/s]\n 52%|█████▏ | 103/200 [00:24<00:22, 4.24it/s]\n 52%|█████▏ | 104/200 [00:24<00:22, 4.24it/s]\n 52%|█████▎ | 105/200 [00:24<00:22, 4.24it/s]\n 53%|█████▎ | 106/200 [00:24<00:22, 4.24it/s]\n 54%|█████▎ | 107/200 [00:25<00:21, 4.23it/s]\n 54%|█████▍ | 108/200 [00:25<00:21, 4.23it/s]\n 55%|█████▍ | 109/200 [00:25<00:21, 4.23it/s]\n 55%|█████▌ | 110/200 [00:25<00:21, 4.23it/s]\n 56%|█████▌ | 111/200 [00:26<00:21, 4.23it/s]\n 56%|█████▌ | 112/200 [00:26<00:20, 4.23it/s]\n 56%|█████▋ | 113/200 [00:26<00:20, 4.23it/s]\n 57%|█████▋ | 114/200 [00:26<00:20, 4.23it/s]\n 57%|█████▊ | 115/200 [00:27<00:20, 4.23it/s]\n 58%|█████▊ | 116/200 [00:27<00:19, 4.23it/s]\n 58%|█████▊ | 117/200 [00:27<00:19, 4.23it/s]\n 59%|█████▉ | 118/200 [00:27<00:19, 4.23it/s]\n 60%|█████▉ | 119/200 [00:28<00:19, 4.23it/s]\n 60%|██████ | 120/200 [00:28<00:18, 4.23it/s]\n 60%|██████ | 121/200 [00:28<00:18, 4.23it/s]\n 61%|██████ | 122/200 [00:28<00:18, 4.23it/s]\n 62%|██████▏ | 123/200 [00:28<00:18, 4.23it/s]\n 62%|██████▏ | 124/200 [00:29<00:17, 4.23it/s]\n 62%|██████▎ | 125/200 [00:29<00:17, 4.23it/s]\n 63%|██████▎ | 126/200 [00:29<00:17, 4.23it/s]\n 64%|██████▎ | 127/200 [00:29<00:17, 4.23it/s]\n 64%|██████▍ | 128/200 [00:30<00:17, 4.23it/s]\n 64%|██████▍ | 129/200 [00:30<00:16, 4.23it/s]\n 65%|██████▌ | 130/200 [00:30<00:16, 4.23it/s]\n 66%|██████▌ | 131/200 [00:30<00:16, 4.23it/s]\n 66%|██████▌ | 132/200 [00:31<00:16, 4.23it/s]\n 66%|██████▋ | 133/200 [00:31<00:15, 4.23it/s]\n 67%|██████▋ | 134/200 [00:31<00:15, 4.23it/s]\n 68%|██████▊ | 135/200 [00:31<00:15, 4.23it/s]\n 68%|██████▊ | 136/200 [00:32<00:15, 4.23it/s]\n 68%|██████▊ | 137/200 [00:32<00:14, 4.23it/s]\n 69%|██████▉ | 138/200 [00:32<00:14, 4.23it/s]\n 70%|██████▉ | 139/200 [00:32<00:14, 4.22it/s]\n 70%|███████ | 140/200 [00:32<00:14, 4.23it/s]\n 70%|███████ | 141/200 [00:33<00:13, 4.22it/s]\n 71%|███████ | 142/200 [00:33<00:13, 4.22it/s]\n 72%|███████▏ | 143/200 [00:33<00:13, 4.22it/s]\n 72%|███████▏ | 144/200 [00:33<00:13, 4.22it/s]\n 72%|███████▎ | 145/200 [00:34<00:13, 4.22it/s]\n 73%|███████▎ | 146/200 [00:34<00:12, 4.22it/s]\n 74%|███████▎ | 147/200 [00:34<00:12, 4.22it/s]\n 74%|███████▍ | 148/200 [00:34<00:12, 4.22it/s]\n 74%|███████▍ | 149/200 [00:35<00:12, 4.22it/s]\n 75%|███████▌ | 150/200 [00:35<00:11, 4.23it/s]\n 76%|███████▌ | 151/200 [00:35<00:11, 4.23it/s]\n 76%|███████▌ | 152/200 [00:35<00:11, 4.22it/s]\n 76%|███████▋ | 153/200 [00:36<00:11, 4.22it/s]\n 77%|███████▋ | 154/200 [00:36<00:10, 4.22it/s]\n 78%|███████▊ | 155/200 [00:36<00:10, 4.22it/s]\n 78%|███████▊ | 156/200 [00:36<00:10, 4.22it/s]\n 78%|███████▊ | 157/200 [00:37<00:10, 4.22it/s]\n 79%|███████▉ | 158/200 [00:37<00:09, 4.22it/s]\n 80%|███████▉ | 159/200 [00:37<00:09, 4.22it/s]\n 80%|████████ | 160/200 [00:37<00:09, 4.22it/s]\n 80%|████████ | 161/200 [00:37<00:09, 4.22it/s]\n 81%|████████ | 162/200 [00:38<00:08, 4.22it/s]\n 82%|████████▏ | 163/200 [00:38<00:08, 4.22it/s]\n 82%|████████▏ | 164/200 [00:38<00:08, 4.22it/s]\n 82%|████████▎ | 165/200 [00:38<00:08, 4.22it/s]\n 83%|████████▎ | 166/200 [00:39<00:08, 4.22it/s]\n 84%|████████▎ | 167/200 [00:39<00:07, 4.22it/s]\n 84%|████████▍ | 168/200 [00:39<00:07, 4.22it/s]\n 84%|████████▍ | 169/200 [00:39<00:07, 4.22it/s]\n 85%|████████▌ | 170/200 [00:40<00:07, 4.22it/s]\n 86%|████████▌ | 171/200 [00:40<00:06, 4.22it/s]\n 86%|████████▌ | 172/200 [00:40<00:06, 4.22it/s]\n 86%|████████▋ | 173/200 [00:40<00:06, 4.22it/s]\n 87%|████████▋ | 174/200 [00:41<00:06, 4.22it/s]\n 88%|████████▊ | 175/200 [00:41<00:05, 4.22it/s]\n 88%|████████▊ | 176/200 [00:41<00:05, 4.22it/s]\n 88%|████████▊ | 177/200 [00:41<00:05, 4.22it/s]\n 89%|████████▉ | 178/200 [00:41<00:05, 4.22it/s]\n 90%|████████▉ | 179/200 [00:42<00:04, 4.21it/s]\n 90%|█████████ | 180/200 [00:42<00:04, 4.21it/s]\n 90%|█████████ | 181/200 [00:42<00:04, 4.21it/s]\n 91%|█████████ | 182/200 [00:42<00:04, 4.21it/s]\n 92%|█████████▏| 183/200 [00:43<00:04, 4.18it/s]\n 92%|█████████▏| 184/200 [00:43<00:03, 4.19it/s]\n 92%|█████████▎| 185/200 [00:43<00:03, 4.20it/s]\n 93%|█████████▎| 186/200 [00:43<00:03, 4.20it/s]\n 94%|█████████▎| 187/200 [00:44<00:03, 4.20it/s]\n 94%|█████████▍| 188/200 [00:44<00:02, 4.21it/s]\n 94%|█████████▍| 189/200 [00:44<00:02, 4.21it/s]\n 95%|█████████▌| 190/200 [00:44<00:02, 4.21it/s]\n 96%|█████████▌| 191/200 [00:45<00:02, 4.21it/s]\n 96%|█████████▌| 192/200 [00:45<00:01, 4.21it/s]\n 96%|█████████▋| 193/200 [00:45<00:01, 4.21it/s]\n 97%|█████████▋| 194/200 [00:45<00:01, 4.21it/s]\n 98%|█████████▊| 195/200 [00:46<00:01, 4.21it/s]\n 98%|█████████▊| 196/200 [00:46<00:00, 4.22it/s]\n 98%|█████████▊| 197/200 [00:46<00:00, 4.22it/s]\n 99%|█████████▉| 198/200 [00:46<00:00, 4.21it/s]\n100%|█████████▉| 199/200 [00:46<00:00, 4.21it/s]\n100%|██████████| 200/200 [00:47<00:00, 4.21it/s]\n100%|██████████| 200/200 [00:47<00:00, 4.24it/s]", "metrics": { "predict_time": 52.235109627, "total_time": 54.281971 }, "output": [ "https://replicate.delivery/pbxt/wkTDAP0tIy50C9x2fpesF6PFQCfm40heIhx023FF5T6S3U2NB/out-0.png" ], "started_at": "2024-09-16T21:21:06.121862Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/fncbc2729drgp0chzjttxkgzar", "cancel": "https://api.replicate.com/v1/predictions/fncbc2729drgp0chzjttxkgzar/cancel" }, "version": "8131e0bdda244be92efcefa91d45450d950a2cafa0234f35ee753bf086f9db72" }
Generated inUsing seed: 46420 Loading fine-tuned model Does not have Unet. assume we are using LoRA Loading Unet LoRA Prompt: <s0><s1>, wearing a birthday hat and holding a bunny txt2img mode 0%| | 0/200 [00:00<?, ?it/s] 0%| | 1/200 [00:00<00:46, 4.31it/s] 1%| | 2/200 [00:00<00:46, 4.28it/s] 2%|▏ | 3/200 [00:00<00:46, 4.27it/s] 2%|▏ | 4/200 [00:00<00:45, 4.27it/s] 2%|▎ | 5/200 [00:01<00:45, 4.27it/s] 3%|▎ | 6/200 [00:01<00:45, 4.27it/s] 4%|▎ | 7/200 [00:01<00:45, 4.27it/s] 4%|▍ | 8/200 [00:01<00:45, 4.26it/s] 4%|▍ | 9/200 [00:02<00:44, 4.26it/s] 5%|▌ | 10/200 [00:02<00:44, 4.26it/s] 6%|▌ | 11/200 [00:02<00:44, 4.26it/s] 6%|▌ | 12/200 [00:02<00:44, 4.26it/s] 6%|▋ | 13/200 [00:03<00:43, 4.26it/s] 7%|▋ | 14/200 [00:03<00:43, 4.26it/s] 8%|▊ | 15/200 [00:03<00:43, 4.26it/s] 8%|▊ | 16/200 [00:03<00:43, 4.26it/s] 8%|▊ | 17/200 [00:03<00:43, 4.25it/s] 9%|▉ | 18/200 [00:04<00:42, 4.25it/s] 10%|▉ | 19/200 [00:04<00:42, 4.25it/s] 10%|█ | 20/200 [00:04<00:42, 4.25it/s] 10%|█ | 21/200 [00:04<00:42, 4.25it/s] 11%|█ | 22/200 [00:05<00:41, 4.24it/s] 12%|█▏ | 23/200 [00:05<00:41, 4.24it/s] 12%|█▏ | 24/200 [00:05<00:41, 4.24it/s] 12%|█▎ | 25/200 [00:05<00:41, 4.24it/s] 13%|█▎ | 26/200 [00:06<00:41, 4.24it/s] 14%|█▎ | 27/200 [00:06<00:40, 4.24it/s] 14%|█▍ | 28/200 [00:06<00:40, 4.24it/s] 14%|█▍ | 29/200 [00:06<00:40, 4.24it/s] 15%|█▌ | 30/200 [00:07<00:40, 4.24it/s] 16%|█▌ | 31/200 [00:07<00:39, 4.24it/s] 16%|█▌ | 32/200 [00:07<00:39, 4.24it/s] 16%|█▋ | 33/200 [00:07<00:39, 4.24it/s] 17%|█▋ | 34/200 [00:07<00:39, 4.24it/s] 18%|█▊ | 35/200 [00:08<00:38, 4.24it/s] 18%|█▊ | 36/200 [00:08<00:38, 4.24it/s] 18%|█▊ | 37/200 [00:08<00:38, 4.25it/s] 19%|█▉ | 38/200 [00:08<00:38, 4.26it/s] 20%|█▉ | 39/200 [00:09<00:37, 4.26it/s] 20%|██ | 40/200 [00:09<00:37, 4.26it/s] 20%|██ | 41/200 [00:09<00:37, 4.26it/s] 21%|██ | 42/200 [00:09<00:37, 4.26it/s] 22%|██▏ | 43/200 [00:10<00:36, 4.26it/s] 22%|██▏ | 44/200 [00:10<00:36, 4.26it/s] 22%|██▎ | 45/200 [00:10<00:36, 4.26it/s] 23%|██▎ | 46/200 [00:10<00:36, 4.26it/s] 24%|██▎ | 47/200 [00:11<00:35, 4.26it/s] 24%|██▍ | 48/200 [00:11<00:35, 4.26it/s] 24%|██▍ | 49/200 [00:11<00:35, 4.26it/s] 25%|██▌ | 50/200 [00:11<00:35, 4.26it/s] 26%|██▌ | 51/200 [00:11<00:35, 4.26it/s] 26%|██▌ | 52/200 [00:12<00:34, 4.25it/s] 26%|██▋ | 53/200 [00:12<00:34, 4.25it/s] 27%|██▋ | 54/200 [00:12<00:34, 4.25it/s] 28%|██▊ | 55/200 [00:12<00:34, 4.25it/s] 28%|██▊ | 56/200 [00:13<00:33, 4.25it/s] 28%|██▊ | 57/200 [00:13<00:33, 4.25it/s] 29%|██▉ | 58/200 [00:13<00:33, 4.26it/s] 30%|██▉ | 59/200 [00:13<00:33, 4.26it/s] 30%|███ | 60/200 [00:14<00:32, 4.26it/s] 30%|███ | 61/200 [00:14<00:32, 4.26it/s] 31%|███ | 62/200 [00:14<00:32, 4.26it/s] 32%|███▏ | 63/200 [00:14<00:32, 4.26it/s] 32%|███▏ | 64/200 [00:15<00:31, 4.26it/s] 32%|███▎ | 65/200 [00:15<00:31, 4.25it/s] 33%|███▎ | 66/200 [00:15<00:31, 4.25it/s] 34%|███▎ | 67/200 [00:15<00:31, 4.26it/s] 34%|███▍ | 68/200 [00:15<00:31, 4.26it/s] 34%|███▍ | 69/200 [00:16<00:30, 4.26it/s] 35%|███▌ | 70/200 [00:16<00:30, 4.25it/s] 36%|███▌ | 71/200 [00:16<00:30, 4.26it/s] 36%|███▌ | 72/200 [00:16<00:30, 4.26it/s] 36%|███▋ | 73/200 [00:17<00:29, 4.25it/s] 37%|███▋ | 74/200 [00:17<00:29, 4.25it/s] 38%|███▊ | 75/200 [00:17<00:29, 4.25it/s] 38%|███▊ | 76/200 [00:17<00:29, 4.25it/s] 38%|███▊ | 77/200 [00:18<00:28, 4.25it/s] 39%|███▉ | 78/200 [00:18<00:28, 4.25it/s] 40%|███▉ | 79/200 [00:18<00:28, 4.25it/s] 40%|████ | 80/200 [00:18<00:28, 4.25it/s] 40%|████ | 81/200 [00:19<00:28, 4.24it/s] 41%|████ | 82/200 [00:19<00:27, 4.24it/s] 42%|████▏ | 83/200 [00:19<00:27, 4.25it/s] 42%|████▏ | 84/200 [00:19<00:27, 4.25it/s] 42%|████▎ | 85/200 [00:19<00:27, 4.25it/s] 43%|████▎ | 86/200 [00:20<00:26, 4.25it/s] 44%|████▎ | 87/200 [00:20<00:26, 4.24it/s] 44%|████▍ | 88/200 [00:20<00:26, 4.24it/s] 44%|████▍ | 89/200 [00:20<00:26, 4.24it/s] 45%|████▌ | 90/200 [00:21<00:25, 4.24it/s] 46%|████▌ | 91/200 [00:21<00:25, 4.24it/s] 46%|████▌ | 92/200 [00:21<00:25, 4.24it/s] 46%|████▋ | 93/200 [00:21<00:25, 4.24it/s] 47%|████▋ | 94/200 [00:22<00:24, 4.24it/s] 48%|████▊ | 95/200 [00:22<00:24, 4.24it/s] 48%|████▊ | 96/200 [00:22<00:24, 4.24it/s] 48%|████▊ | 97/200 [00:22<00:24, 4.24it/s] 49%|████▉ | 98/200 [00:23<00:24, 4.24it/s] 50%|████▉ | 99/200 [00:23<00:23, 4.24it/s] 50%|█████ | 100/200 [00:23<00:23, 4.23it/s] 50%|█████ | 101/200 [00:23<00:23, 4.23it/s] 51%|█████ | 102/200 [00:23<00:23, 4.24it/s] 52%|█████▏ | 103/200 [00:24<00:22, 4.24it/s] 52%|█████▏ | 104/200 [00:24<00:22, 4.24it/s] 52%|█████▎ | 105/200 [00:24<00:22, 4.24it/s] 53%|█████▎ | 106/200 [00:24<00:22, 4.24it/s] 54%|█████▎ | 107/200 [00:25<00:21, 4.23it/s] 54%|█████▍ | 108/200 [00:25<00:21, 4.23it/s] 55%|█████▍ | 109/200 [00:25<00:21, 4.23it/s] 55%|█████▌ | 110/200 [00:25<00:21, 4.23it/s] 56%|█████▌ | 111/200 [00:26<00:21, 4.23it/s] 56%|█████▌ | 112/200 [00:26<00:20, 4.23it/s] 56%|█████▋ | 113/200 [00:26<00:20, 4.23it/s] 57%|█████▋ | 114/200 [00:26<00:20, 4.23it/s] 57%|█████▊ | 115/200 [00:27<00:20, 4.23it/s] 58%|█████▊ | 116/200 [00:27<00:19, 4.23it/s] 58%|█████▊ | 117/200 [00:27<00:19, 4.23it/s] 59%|█████▉ | 118/200 [00:27<00:19, 4.23it/s] 60%|█████▉ | 119/200 [00:28<00:19, 4.23it/s] 60%|██████ | 120/200 [00:28<00:18, 4.23it/s] 60%|██████ | 121/200 [00:28<00:18, 4.23it/s] 61%|██████ | 122/200 [00:28<00:18, 4.23it/s] 62%|██████▏ | 123/200 [00:28<00:18, 4.23it/s] 62%|██████▏ | 124/200 [00:29<00:17, 4.23it/s] 62%|██████▎ | 125/200 [00:29<00:17, 4.23it/s] 63%|██████▎ | 126/200 [00:29<00:17, 4.23it/s] 64%|██████▎ | 127/200 [00:29<00:17, 4.23it/s] 64%|██████▍ | 128/200 [00:30<00:17, 4.23it/s] 64%|██████▍ | 129/200 [00:30<00:16, 4.23it/s] 65%|██████▌ | 130/200 [00:30<00:16, 4.23it/s] 66%|██████▌ | 131/200 [00:30<00:16, 4.23it/s] 66%|██████▌ | 132/200 [00:31<00:16, 4.23it/s] 66%|██████▋ | 133/200 [00:31<00:15, 4.23it/s] 67%|██████▋ | 134/200 [00:31<00:15, 4.23it/s] 68%|██████▊ | 135/200 [00:31<00:15, 4.23it/s] 68%|██████▊ | 136/200 [00:32<00:15, 4.23it/s] 68%|██████▊ | 137/200 [00:32<00:14, 4.23it/s] 69%|██████▉ | 138/200 [00:32<00:14, 4.23it/s] 70%|██████▉ | 139/200 [00:32<00:14, 4.22it/s] 70%|███████ | 140/200 [00:32<00:14, 4.23it/s] 70%|███████ | 141/200 [00:33<00:13, 4.22it/s] 71%|███████ | 142/200 [00:33<00:13, 4.22it/s] 72%|███████▏ | 143/200 [00:33<00:13, 4.22it/s] 72%|███████▏ | 144/200 [00:33<00:13, 4.22it/s] 72%|███████▎ | 145/200 [00:34<00:13, 4.22it/s] 73%|███████▎ | 146/200 [00:34<00:12, 4.22it/s] 74%|███████▎ | 147/200 [00:34<00:12, 4.22it/s] 74%|███████▍ | 148/200 [00:34<00:12, 4.22it/s] 74%|███████▍ | 149/200 [00:35<00:12, 4.22it/s] 75%|███████▌ | 150/200 [00:35<00:11, 4.23it/s] 76%|███████▌ | 151/200 [00:35<00:11, 4.23it/s] 76%|███████▌ | 152/200 [00:35<00:11, 4.22it/s] 76%|███████▋ | 153/200 [00:36<00:11, 4.22it/s] 77%|███████▋ | 154/200 [00:36<00:10, 4.22it/s] 78%|███████▊ | 155/200 [00:36<00:10, 4.22it/s] 78%|███████▊ | 156/200 [00:36<00:10, 4.22it/s] 78%|███████▊ | 157/200 [00:37<00:10, 4.22it/s] 79%|███████▉ | 158/200 [00:37<00:09, 4.22it/s] 80%|███████▉ | 159/200 [00:37<00:09, 4.22it/s] 80%|████████ | 160/200 [00:37<00:09, 4.22it/s] 80%|████████ | 161/200 [00:37<00:09, 4.22it/s] 81%|████████ | 162/200 [00:38<00:08, 4.22it/s] 82%|████████▏ | 163/200 [00:38<00:08, 4.22it/s] 82%|████████▏ | 164/200 [00:38<00:08, 4.22it/s] 82%|████████▎ | 165/200 [00:38<00:08, 4.22it/s] 83%|████████▎ | 166/200 [00:39<00:08, 4.22it/s] 84%|████████▎ | 167/200 [00:39<00:07, 4.22it/s] 84%|████████▍ | 168/200 [00:39<00:07, 4.22it/s] 84%|████████▍ | 169/200 [00:39<00:07, 4.22it/s] 85%|████████▌ | 170/200 [00:40<00:07, 4.22it/s] 86%|████████▌ | 171/200 [00:40<00:06, 4.22it/s] 86%|████████▌ | 172/200 [00:40<00:06, 4.22it/s] 86%|████████▋ | 173/200 [00:40<00:06, 4.22it/s] 87%|████████▋ | 174/200 [00:41<00:06, 4.22it/s] 88%|████████▊ | 175/200 [00:41<00:05, 4.22it/s] 88%|████████▊ | 176/200 [00:41<00:05, 4.22it/s] 88%|████████▊ | 177/200 [00:41<00:05, 4.22it/s] 89%|████████▉ | 178/200 [00:41<00:05, 4.22it/s] 90%|████████▉ | 179/200 [00:42<00:04, 4.21it/s] 90%|█████████ | 180/200 [00:42<00:04, 4.21it/s] 90%|█████████ | 181/200 [00:42<00:04, 4.21it/s] 91%|█████████ | 182/200 [00:42<00:04, 4.21it/s] 92%|█████████▏| 183/200 [00:43<00:04, 4.18it/s] 92%|█████████▏| 184/200 [00:43<00:03, 4.19it/s] 92%|█████████▎| 185/200 [00:43<00:03, 4.20it/s] 93%|█████████▎| 186/200 [00:43<00:03, 4.20it/s] 94%|█████████▎| 187/200 [00:44<00:03, 4.20it/s] 94%|█████████▍| 188/200 [00:44<00:02, 4.21it/s] 94%|█████████▍| 189/200 [00:44<00:02, 4.21it/s] 95%|█████████▌| 190/200 [00:44<00:02, 4.21it/s] 96%|█████████▌| 191/200 [00:45<00:02, 4.21it/s] 96%|█████████▌| 192/200 [00:45<00:01, 4.21it/s] 96%|█████████▋| 193/200 [00:45<00:01, 4.21it/s] 97%|█████████▋| 194/200 [00:45<00:01, 4.21it/s] 98%|█████████▊| 195/200 [00:46<00:01, 4.21it/s] 98%|█████████▊| 196/200 [00:46<00:00, 4.22it/s] 98%|█████████▊| 197/200 [00:46<00:00, 4.22it/s] 99%|█████████▉| 198/200 [00:46<00:00, 4.21it/s] 100%|█████████▉| 199/200 [00:46<00:00, 4.21it/s] 100%|██████████| 200/200 [00:47<00:00, 4.21it/s] 100%|██████████| 200/200 [00:47<00:00, 4.24it/s]
Want to make some of these yourself?
Run this model