jfals82 / nathan
- Public
- 13 runs
- SDXL fine-tune
Prediction
jfals82/nathan:fc455ca77fa185a5bed8e508250cdaebb0c9b2b04329eec439ae73eebf32bb52IDbqzm72my8nrgg0cj8q2t42s4amStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- A picture of Nathan, headshot, muscle, birthday hat, desert
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.6
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- prompt_strength
- 0.6
- num_inference_steps
- 105
{ "width": 1024, "height": 1024, "prompt": "A picture of Nathan, headshot, muscle, birthday hat, desert", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.6, "num_inference_steps": 105 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run jfals82/nathan using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "jfals82/nathan:fc455ca77fa185a5bed8e508250cdaebb0c9b2b04329eec439ae73eebf32bb52", { input: { width: 1024, height: 1024, prompt: "A picture of Nathan, headshot, muscle, birthday hat, desert", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.6, num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "", prompt_strength: 0.6, num_inference_steps: 105 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run jfals82/nathan using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "jfals82/nathan:fc455ca77fa185a5bed8e508250cdaebb0c9b2b04329eec439ae73eebf32bb52", input={ "width": 1024, "height": 1024, "prompt": "A picture of Nathan, headshot, muscle, birthday hat, desert", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.6, "num_inference_steps": 105 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run jfals82/nathan using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "jfals82/nathan:fc455ca77fa185a5bed8e508250cdaebb0c9b2b04329eec439ae73eebf32bb52", "input": { "width": 1024, "height": 1024, "prompt": "A picture of Nathan, headshot, muscle, birthday hat, desert", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.6, "num_inference_steps": 105 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-01T01:51:06.751368Z", "created_at": "2024-10-01T01:50:32.005000Z", "data_removed": false, "error": null, "id": "bqzm72my8nrgg0cj8q2t42s4am", "input": { "width": 1024, "height": 1024, "prompt": "A picture of Nathan, headshot, muscle, birthday hat, desert", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.6, "num_inference_steps": 105 }, "logs": "Using seed: 59686\nEnsuring enough disk space...\nFree disk space: 1977230995456\nDownloading weights: https://replicate.delivery/pbxt/hwHYPvVKYIKPDpe8ry6qVvxSFhjqVTviCNs6mxWxeZlKRQiTA/trained_model.tar\n2024-10-01T01:50:36Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/d1ae482fb9a57e9f url=https://replicate.delivery/pbxt/hwHYPvVKYIKPDpe8ry6qVvxSFhjqVTviCNs6mxWxeZlKRQiTA/trained_model.tar\n2024-10-01T01:50:38Z | INFO | [ Complete ] dest=/src/weights-cache/d1ae482fb9a57e9f size=\"186 MB\" total_elapsed=1.913s url=https://replicate.delivery/pbxt/hwHYPvVKYIKPDpe8ry6qVvxSFhjqVTviCNs6mxWxeZlKRQiTA/trained_model.tar\nb''\nDownloaded weights in 2.0191502571105957 seconds\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: A picture of Nathan, headshot, muscle, birthday hat, desert\ntxt2img mode\n 0%| | 0/105 [00:00<?, ?it/s]/usr/local/lib/python3.9/site-packages/torch/nn/modules/conv.py:459: UserWarning: Applied workaround for CuDNN issue, install nvrtc.so (Triggered internally at ../aten/src/ATen/native/cudnn/Conv_v8.cpp:80.)\nreturn F.conv2d(input, weight, bias, self.stride,\n/usr/local/lib/python3.9/site-packages/diffusers/models/attention_processor.py:1946: FutureWarning: `LoRAAttnProcessor2_0` is deprecated and will be removed in version 0.26.0. Make sure use AttnProcessor2_0 instead by settingLoRA layers to `self.{to_q,to_k,to_v,to_out[0]}.lora_layer` respectively. This will be done automatically when using `LoraLoaderMixin.load_lora_weights`\ndeprecate(\n 1%| | 1/105 [00:00<01:32, 1.13it/s]\n 2%|▏ | 2/105 [00:01<00:51, 2.00it/s]\n 3%|▎ | 3/105 [00:01<00:38, 2.64it/s]\n 4%|▍ | 4/105 [00:01<00:32, 3.12it/s]\n 5%|▍ | 5/105 [00:01<00:28, 3.45it/s]\n 6%|▌ | 6/105 [00:02<00:26, 3.70it/s]\n 7%|▋ | 7/105 [00:02<00:25, 3.86it/s]\n 8%|▊ | 8/105 [00:02<00:24, 3.99it/s]\n 9%|▊ | 9/105 [00:02<00:23, 4.08it/s]\n 10%|▉ | 10/105 [00:02<00:22, 4.14it/s]\n 10%|█ | 11/105 [00:03<00:22, 4.18it/s]\n 11%|█▏ | 12/105 [00:03<00:22, 4.21it/s]\n 12%|█▏ | 13/105 [00:03<00:21, 4.23it/s]\n 13%|█▎ | 14/105 [00:03<00:21, 4.24it/s]\n 14%|█▍ | 15/105 [00:04<00:21, 4.25it/s]\n 15%|█▌ | 16/105 [00:04<00:20, 4.26it/s]\n 16%|█▌ | 17/105 [00:04<00:20, 4.26it/s]\n 17%|█▋ | 18/105 [00:04<00:20, 4.26it/s]\n 18%|█▊ | 19/105 [00:05<00:20, 4.26it/s]\n 19%|█▉ | 20/105 [00:05<00:19, 4.26it/s]\n 20%|██ | 21/105 [00:05<00:19, 4.26it/s]\n 21%|██ | 22/105 [00:05<00:19, 4.27it/s]\n 22%|██▏ | 23/105 [00:06<00:19, 4.27it/s]\n 23%|██▎ | 24/105 [00:06<00:18, 4.27it/s]\n 24%|██▍ | 25/105 [00:06<00:18, 4.26it/s]\n 25%|██▍ | 26/105 [00:06<00:18, 4.26it/s]\n 26%|██▌ | 27/105 [00:06<00:18, 4.26it/s]\n 27%|██▋ | 28/105 [00:07<00:18, 4.26it/s]\n 28%|██▊ | 29/105 [00:07<00:17, 4.26it/s]\n 29%|██▊ | 30/105 [00:07<00:17, 4.26it/s]\n 30%|██▉ | 31/105 [00:07<00:17, 4.26it/s]\n 30%|███ | 32/105 [00:08<00:17, 4.26it/s]\n 31%|███▏ | 33/105 [00:08<00:16, 4.26it/s]\n 32%|███▏ | 34/105 [00:08<00:16, 4.26it/s]\n 33%|███▎ | 35/105 [00:08<00:16, 4.26it/s]\n 34%|███▍ | 36/105 [00:09<00:16, 4.26it/s]\n 35%|███▌ | 37/105 [00:09<00:15, 4.26it/s]\n 36%|███▌ | 38/105 [00:09<00:15, 4.26it/s]\n 37%|███▋ | 39/105 [00:09<00:15, 4.25it/s]\n 38%|███▊ | 40/105 [00:10<00:15, 4.25it/s]\n 39%|███▉ | 41/105 [00:10<00:15, 4.25it/s]\n 40%|████ | 42/105 [00:10<00:14, 4.25it/s]\n 41%|████ | 43/105 [00:10<00:14, 4.25it/s]\n 42%|████▏ | 44/105 [00:10<00:14, 4.25it/s]\n 43%|████▎ | 45/105 [00:11<00:14, 4.25it/s]\n 44%|████▍ | 46/105 [00:11<00:13, 4.25it/s]\n 45%|████▍ | 47/105 [00:11<00:13, 4.25it/s]\n 46%|████▌ | 48/105 [00:11<00:13, 4.25it/s]\n 47%|████▋ | 49/105 [00:12<00:13, 4.25it/s]\n 48%|████▊ | 50/105 [00:12<00:12, 4.25it/s]\n 49%|████▊ | 51/105 [00:12<00:12, 4.24it/s]\n 50%|████▉ | 52/105 [00:12<00:12, 4.24it/s]\n 50%|█████ | 53/105 [00:13<00:12, 4.24it/s]\n 51%|█████▏ | 54/105 [00:13<00:12, 4.24it/s]\n 52%|█████▏ | 55/105 [00:13<00:11, 4.24it/s]\n 53%|█████▎ | 56/105 [00:13<00:11, 4.24it/s]\n 54%|█████▍ | 57/105 [00:14<00:11, 4.24it/s]\n 55%|█████▌ | 58/105 [00:14<00:11, 4.24it/s]\n 56%|█████▌ | 59/105 [00:14<00:10, 4.24it/s]\n 57%|█████▋ | 60/105 [00:14<00:10, 4.23it/s]\n 58%|█████▊ | 61/105 [00:14<00:10, 4.24it/s]\n 59%|█████▉ | 62/105 [00:15<00:10, 4.24it/s]\n 60%|██████ | 63/105 [00:15<00:09, 4.24it/s]\n 61%|██████ | 64/105 [00:15<00:09, 4.24it/s]\n 62%|██████▏ | 65/105 [00:15<00:09, 4.24it/s]\n 63%|██████▎ | 66/105 [00:16<00:09, 4.24it/s]\n 64%|██████▍ | 67/105 [00:16<00:08, 4.24it/s]\n 65%|██████▍ | 68/105 [00:16<00:08, 4.24it/s]\n 66%|██████▌ | 69/105 [00:16<00:08, 4.23it/s]\n 67%|██████▋ | 70/105 [00:17<00:08, 4.23it/s]\n 68%|██████▊ | 71/105 [00:17<00:08, 4.23it/s]\n 69%|██████▊ | 72/105 [00:17<00:07, 4.23it/s]\n 70%|██████▉ | 73/105 [00:17<00:07, 4.23it/s]\n 70%|███████ | 74/105 [00:18<00:07, 4.23it/s]\n 71%|███████▏ | 75/105 [00:18<00:07, 4.23it/s]\n 72%|███████▏ | 76/105 [00:18<00:06, 4.23it/s]\n 73%|███████▎ | 77/105 [00:18<00:06, 4.23it/s]\n 74%|███████▍ | 78/105 [00:18<00:06, 4.23it/s]\n 75%|███████▌ | 79/105 [00:19<00:06, 4.23it/s]\n 76%|███████▌ | 80/105 [00:19<00:05, 4.23it/s]\n 77%|███████▋ | 81/105 [00:19<00:05, 4.23it/s]\n 78%|███████▊ | 82/105 [00:19<00:05, 4.23it/s]\n 79%|███████▉ | 83/105 [00:20<00:05, 4.23it/s]\n 80%|████████ | 84/105 [00:20<00:04, 4.23it/s]\n 81%|████████ | 85/105 [00:20<00:04, 4.23it/s]\n 82%|████████▏ | 86/105 [00:20<00:04, 4.23it/s]\n 83%|████████▎ | 87/105 [00:21<00:04, 4.23it/s]\n 84%|████████▍ | 88/105 [00:21<00:04, 4.23it/s]\n 85%|████████▍ | 89/105 [00:21<00:03, 4.23it/s]\n 86%|████████▌ | 90/105 [00:21<00:03, 4.23it/s]\n 87%|████████▋ | 91/105 [00:22<00:03, 4.23it/s]\n 88%|████████▊ | 92/105 [00:22<00:03, 4.23it/s]\n 89%|████████▊ | 93/105 [00:22<00:02, 4.23it/s]\n 90%|████████▉ | 94/105 [00:22<00:02, 4.23it/s]\n 90%|█████████ | 95/105 [00:23<00:02, 4.23it/s]\n 91%|█████████▏| 96/105 [00:23<00:02, 4.23it/s]\n 92%|█████████▏| 97/105 [00:23<00:01, 4.23it/s]\n 93%|█████████▎| 98/105 [00:23<00:01, 4.23it/s]\n 94%|█████████▍| 99/105 [00:23<00:01, 4.23it/s]\n 95%|█████████▌| 100/105 [00:24<00:01, 4.22it/s]\n 96%|█████████▌| 101/105 [00:24<00:00, 4.23it/s]\n 97%|█████████▋| 102/105 [00:24<00:00, 4.22it/s]\n 98%|█████████▊| 103/105 [00:24<00:00, 4.22it/s]\n 99%|█████████▉| 104/105 [00:25<00:00, 4.22it/s]\n100%|██████████| 105/105 [00:25<00:00, 4.22it/s]\n100%|██████████| 105/105 [00:25<00:00, 4.14it/s]", "metrics": { "predict_time": 30.346531456, "total_time": 34.746368 }, "output": [ "https://replicate.delivery/pbxt/wtoCke2zesogep0uDw1Gi3e5WZMsueohiq9fJAvyyB5hiHk4E/out-0.png" ], "started_at": "2024-10-01T01:50:36.404836Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/bqzm72my8nrgg0cj8q2t42s4am", "cancel": "https://api.replicate.com/v1/predictions/bqzm72my8nrgg0cj8q2t42s4am/cancel" }, "version": "fc455ca77fa185a5bed8e508250cdaebb0c9b2b04329eec439ae73eebf32bb52" }
Generated inUsing seed: 59686 Ensuring enough disk space... Free disk space: 1977230995456 Downloading weights: https://replicate.delivery/pbxt/hwHYPvVKYIKPDpe8ry6qVvxSFhjqVTviCNs6mxWxeZlKRQiTA/trained_model.tar 2024-10-01T01:50:36Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/d1ae482fb9a57e9f url=https://replicate.delivery/pbxt/hwHYPvVKYIKPDpe8ry6qVvxSFhjqVTviCNs6mxWxeZlKRQiTA/trained_model.tar 2024-10-01T01:50:38Z | INFO | [ Complete ] dest=/src/weights-cache/d1ae482fb9a57e9f size="186 MB" total_elapsed=1.913s url=https://replicate.delivery/pbxt/hwHYPvVKYIKPDpe8ry6qVvxSFhjqVTviCNs6mxWxeZlKRQiTA/trained_model.tar b'' Downloaded weights in 2.0191502571105957 seconds Loading fine-tuned model Does not have Unet. assume we are using LoRA Loading Unet LoRA Prompt: A picture of Nathan, headshot, muscle, birthday hat, desert txt2img mode 0%| | 0/105 [00:00<?, ?it/s]/usr/local/lib/python3.9/site-packages/torch/nn/modules/conv.py:459: UserWarning: Applied workaround for CuDNN issue, install nvrtc.so (Triggered internally at ../aten/src/ATen/native/cudnn/Conv_v8.cpp:80.) return F.conv2d(input, weight, bias, self.stride, /usr/local/lib/python3.9/site-packages/diffusers/models/attention_processor.py:1946: FutureWarning: `LoRAAttnProcessor2_0` is deprecated and will be removed in version 0.26.0. Make sure use AttnProcessor2_0 instead by settingLoRA layers to `self.{to_q,to_k,to_v,to_out[0]}.lora_layer` respectively. This will be done automatically when using `LoraLoaderMixin.load_lora_weights` deprecate( 1%| | 1/105 [00:00<01:32, 1.13it/s] 2%|▏ | 2/105 [00:01<00:51, 2.00it/s] 3%|▎ | 3/105 [00:01<00:38, 2.64it/s] 4%|▍ | 4/105 [00:01<00:32, 3.12it/s] 5%|▍ | 5/105 [00:01<00:28, 3.45it/s] 6%|▌ | 6/105 [00:02<00:26, 3.70it/s] 7%|▋ | 7/105 [00:02<00:25, 3.86it/s] 8%|▊ | 8/105 [00:02<00:24, 3.99it/s] 9%|▊ | 9/105 [00:02<00:23, 4.08it/s] 10%|▉ | 10/105 [00:02<00:22, 4.14it/s] 10%|█ | 11/105 [00:03<00:22, 4.18it/s] 11%|█▏ | 12/105 [00:03<00:22, 4.21it/s] 12%|█▏ | 13/105 [00:03<00:21, 4.23it/s] 13%|█▎ | 14/105 [00:03<00:21, 4.24it/s] 14%|█▍ | 15/105 [00:04<00:21, 4.25it/s] 15%|█▌ | 16/105 [00:04<00:20, 4.26it/s] 16%|█▌ | 17/105 [00:04<00:20, 4.26it/s] 17%|█▋ | 18/105 [00:04<00:20, 4.26it/s] 18%|█▊ | 19/105 [00:05<00:20, 4.26it/s] 19%|█▉ | 20/105 [00:05<00:19, 4.26it/s] 20%|██ | 21/105 [00:05<00:19, 4.26it/s] 21%|██ | 22/105 [00:05<00:19, 4.27it/s] 22%|██▏ | 23/105 [00:06<00:19, 4.27it/s] 23%|██▎ | 24/105 [00:06<00:18, 4.27it/s] 24%|██▍ | 25/105 [00:06<00:18, 4.26it/s] 25%|██▍ | 26/105 [00:06<00:18, 4.26it/s] 26%|██▌ | 27/105 [00:06<00:18, 4.26it/s] 27%|██▋ | 28/105 [00:07<00:18, 4.26it/s] 28%|██▊ | 29/105 [00:07<00:17, 4.26it/s] 29%|██▊ | 30/105 [00:07<00:17, 4.26it/s] 30%|██▉ | 31/105 [00:07<00:17, 4.26it/s] 30%|███ | 32/105 [00:08<00:17, 4.26it/s] 31%|███▏ | 33/105 [00:08<00:16, 4.26it/s] 32%|███▏ | 34/105 [00:08<00:16, 4.26it/s] 33%|███▎ | 35/105 [00:08<00:16, 4.26it/s] 34%|███▍ | 36/105 [00:09<00:16, 4.26it/s] 35%|███▌ | 37/105 [00:09<00:15, 4.26it/s] 36%|███▌ | 38/105 [00:09<00:15, 4.26it/s] 37%|███▋ | 39/105 [00:09<00:15, 4.25it/s] 38%|███▊ | 40/105 [00:10<00:15, 4.25it/s] 39%|███▉ | 41/105 [00:10<00:15, 4.25it/s] 40%|████ | 42/105 [00:10<00:14, 4.25it/s] 41%|████ | 43/105 [00:10<00:14, 4.25it/s] 42%|████▏ | 44/105 [00:10<00:14, 4.25it/s] 43%|████▎ | 45/105 [00:11<00:14, 4.25it/s] 44%|████▍ | 46/105 [00:11<00:13, 4.25it/s] 45%|████▍ | 47/105 [00:11<00:13, 4.25it/s] 46%|████▌ | 48/105 [00:11<00:13, 4.25it/s] 47%|████▋ | 49/105 [00:12<00:13, 4.25it/s] 48%|████▊ | 50/105 [00:12<00:12, 4.25it/s] 49%|████▊ | 51/105 [00:12<00:12, 4.24it/s] 50%|████▉ | 52/105 [00:12<00:12, 4.24it/s] 50%|█████ | 53/105 [00:13<00:12, 4.24it/s] 51%|█████▏ | 54/105 [00:13<00:12, 4.24it/s] 52%|█████▏ | 55/105 [00:13<00:11, 4.24it/s] 53%|█████▎ | 56/105 [00:13<00:11, 4.24it/s] 54%|█████▍ | 57/105 [00:14<00:11, 4.24it/s] 55%|█████▌ | 58/105 [00:14<00:11, 4.24it/s] 56%|█████▌ | 59/105 [00:14<00:10, 4.24it/s] 57%|█████▋ | 60/105 [00:14<00:10, 4.23it/s] 58%|█████▊ | 61/105 [00:14<00:10, 4.24it/s] 59%|█████▉ | 62/105 [00:15<00:10, 4.24it/s] 60%|██████ | 63/105 [00:15<00:09, 4.24it/s] 61%|██████ | 64/105 [00:15<00:09, 4.24it/s] 62%|██████▏ | 65/105 [00:15<00:09, 4.24it/s] 63%|██████▎ | 66/105 [00:16<00:09, 4.24it/s] 64%|██████▍ | 67/105 [00:16<00:08, 4.24it/s] 65%|██████▍ | 68/105 [00:16<00:08, 4.24it/s] 66%|██████▌ | 69/105 [00:16<00:08, 4.23it/s] 67%|██████▋ | 70/105 [00:17<00:08, 4.23it/s] 68%|██████▊ | 71/105 [00:17<00:08, 4.23it/s] 69%|██████▊ | 72/105 [00:17<00:07, 4.23it/s] 70%|██████▉ | 73/105 [00:17<00:07, 4.23it/s] 70%|███████ | 74/105 [00:18<00:07, 4.23it/s] 71%|███████▏ | 75/105 [00:18<00:07, 4.23it/s] 72%|███████▏ | 76/105 [00:18<00:06, 4.23it/s] 73%|███████▎ | 77/105 [00:18<00:06, 4.23it/s] 74%|███████▍ | 78/105 [00:18<00:06, 4.23it/s] 75%|███████▌ | 79/105 [00:19<00:06, 4.23it/s] 76%|███████▌ | 80/105 [00:19<00:05, 4.23it/s] 77%|███████▋ | 81/105 [00:19<00:05, 4.23it/s] 78%|███████▊ | 82/105 [00:19<00:05, 4.23it/s] 79%|███████▉ | 83/105 [00:20<00:05, 4.23it/s] 80%|████████ | 84/105 [00:20<00:04, 4.23it/s] 81%|████████ | 85/105 [00:20<00:04, 4.23it/s] 82%|████████▏ | 86/105 [00:20<00:04, 4.23it/s] 83%|████████▎ | 87/105 [00:21<00:04, 4.23it/s] 84%|████████▍ | 88/105 [00:21<00:04, 4.23it/s] 85%|████████▍ | 89/105 [00:21<00:03, 4.23it/s] 86%|████████▌ | 90/105 [00:21<00:03, 4.23it/s] 87%|████████▋ | 91/105 [00:22<00:03, 4.23it/s] 88%|████████▊ | 92/105 [00:22<00:03, 4.23it/s] 89%|████████▊ | 93/105 [00:22<00:02, 4.23it/s] 90%|████████▉ | 94/105 [00:22<00:02, 4.23it/s] 90%|█████████ | 95/105 [00:23<00:02, 4.23it/s] 91%|█████████▏| 96/105 [00:23<00:02, 4.23it/s] 92%|█████████▏| 97/105 [00:23<00:01, 4.23it/s] 93%|█████████▎| 98/105 [00:23<00:01, 4.23it/s] 94%|█████████▍| 99/105 [00:23<00:01, 4.23it/s] 95%|█████████▌| 100/105 [00:24<00:01, 4.22it/s] 96%|█████████▌| 101/105 [00:24<00:00, 4.23it/s] 97%|█████████▋| 102/105 [00:24<00:00, 4.22it/s] 98%|█████████▊| 103/105 [00:24<00:00, 4.22it/s] 99%|█████████▉| 104/105 [00:25<00:00, 4.22it/s] 100%|██████████| 105/105 [00:25<00:00, 4.22it/s] 100%|██████████| 105/105 [00:25<00:00, 4.14it/s]
Want to make some of these yourself?
Run this model