You're looking at a specific version of this model. Jump to the model overview.
joshelgar /andrwfrclgh:47452545
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run joshelgar/andrwfrclgh using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"joshelgar/andrwfrclgh:474525450f8a878ae019fa758c8f4b91f24453e25cb31939e5dbc55da256c6f7",
{
input: {
seed: 39535,
model: "dev",
prompt: "a beautiful shark wallpaper, ANDRWFRCLGH",
go_fast: false,
lora_scale: 1.5,
megapixels: "1",
num_outputs: 1,
aspect_ratio: "1:1",
output_format: "webp",
guidance_scale: 3.5,
output_quality: 100,
prompt_strength: 0.8,
extra_lora_scale: 1,
num_inference_steps: 28
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run joshelgar/andrwfrclgh using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"joshelgar/andrwfrclgh:474525450f8a878ae019fa758c8f4b91f24453e25cb31939e5dbc55da256c6f7",
input={
"seed": 39535,
"model": "dev",
"prompt": "a beautiful shark wallpaper, ANDRWFRCLGH",
"go_fast": False,
"lora_scale": 1.5,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 100,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run joshelgar/andrwfrclgh using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "joshelgar/andrwfrclgh:474525450f8a878ae019fa758c8f4b91f24453e25cb31939e5dbc55da256c6f7",
"input": {
"seed": 39535,
"model": "dev",
"prompt": "a beautiful shark wallpaper, ANDRWFRCLGH",
"go_fast": false,
"lora_scale": 1.5,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 100,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/joshelgar/andrwfrclgh@sha256:474525450f8a878ae019fa758c8f4b91f24453e25cb31939e5dbc55da256c6f7 \
-i 'seed=39535' \
-i 'model="dev"' \
-i 'prompt="a beautiful shark wallpaper, ANDRWFRCLGH"' \
-i 'go_fast=false' \
-i 'lora_scale=1.5' \
-i 'megapixels="1"' \
-i 'num_outputs=1' \
-i 'aspect_ratio="1:1"' \
-i 'output_format="webp"' \
-i 'guidance_scale=3.5' \
-i 'output_quality=100' \
-i 'prompt_strength=0.8' \
-i 'extra_lora_scale=1' \
-i 'num_inference_steps=28'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/joshelgar/andrwfrclgh@sha256:474525450f8a878ae019fa758c8f4b91f24453e25cb31939e5dbc55da256c6f7
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "seed": 39535, "model": "dev", "prompt": "a beautiful shark wallpaper, ANDRWFRCLGH", "go_fast": false, "lora_scale": 1.5, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 100, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2024-08-20T08:10:12.909665Z",
"created_at": "2024-08-20T08:09:56.293000Z",
"data_removed": false,
"error": null,
"id": "3x8ksjz18nrm40chdvat9e8j2c",
"input": {
"seed": 39535,
"model": "dev",
"prompt": "a beautiful shark wallpaper, ANDRWFRCLGH",
"lora_scale": 1.5,
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 100,
"num_inference_steps": 28
},
"logs": "Using seed: 39535\nPrompt: a beautiful shark wallpaper, ANDRWFRCLGH\ntxt2img mode\nUsing dev model\nLoading LoRA weights\nLoRA weights loaded successfully\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.55it/s]\n 7%|▋ | 2/28 [00:00<00:06, 3.98it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.77it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.68it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.64it/s]\n 21%|██▏ | 6/28 [00:01<00:06, 3.61it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.58it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.58it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.58it/s]\n 36%|███▌ | 10/28 [00:02<00:05, 3.57it/s]\n 39%|███▉ | 11/28 [00:03<00:04, 3.57it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.56it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.55it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.55it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.55it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.56it/s]\n 61%|██████ | 17/28 [00:04<00:03, 3.56it/s]\n 64%|██████▍ | 18/28 [00:05<00:02, 3.56it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.56it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.56it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.56it/s]\n 79%|███████▊ | 22/28 [00:06<00:01, 3.56it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.56it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.55it/s]\n 89%|████████▉ | 25/28 [00:06<00:00, 3.55it/s]\n 93%|█████████▎| 26/28 [00:07<00:00, 3.56it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.55it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.55it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.58it/s]",
"metrics": {
"predict_time": 16.582006855,
"total_time": 16.616665
},
"output": [
"https://replicate.delivery/yhqm/2BOgJFGbv3pIK9NydLqWpTOhTkuNKPHeDNNcr2p2HgVyCQqJA/out-0.webp"
],
"started_at": "2024-08-20T08:09:56.327658Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/3x8ksjz18nrm40chdvat9e8j2c",
"cancel": "https://api.replicate.com/v1/predictions/3x8ksjz18nrm40chdvat9e8j2c/cancel"
},
"version": "474525450f8a878ae019fa758c8f4b91f24453e25cb31939e5dbc55da256c6f7"
}
Using seed: 39535
Prompt: a beautiful shark wallpaper, ANDRWFRCLGH
txt2img mode
Using dev model
Loading LoRA weights
LoRA weights loaded successfully
0%| | 0/28 [00:00<?, ?it/s]
4%|▎ | 1/28 [00:00<00:07, 3.55it/s]
7%|▋ | 2/28 [00:00<00:06, 3.98it/s]
11%|█ | 3/28 [00:00<00:06, 3.77it/s]
14%|█▍ | 4/28 [00:01<00:06, 3.68it/s]
18%|█▊ | 5/28 [00:01<00:06, 3.64it/s]
21%|██▏ | 6/28 [00:01<00:06, 3.61it/s]
25%|██▌ | 7/28 [00:01<00:05, 3.58it/s]
29%|██▊ | 8/28 [00:02<00:05, 3.58it/s]
32%|███▏ | 9/28 [00:02<00:05, 3.58it/s]
36%|███▌ | 10/28 [00:02<00:05, 3.57it/s]
39%|███▉ | 11/28 [00:03<00:04, 3.57it/s]
43%|████▎ | 12/28 [00:03<00:04, 3.56it/s]
46%|████▋ | 13/28 [00:03<00:04, 3.55it/s]
50%|█████ | 14/28 [00:03<00:03, 3.55it/s]
54%|█████▎ | 15/28 [00:04<00:03, 3.55it/s]
57%|█████▋ | 16/28 [00:04<00:03, 3.56it/s]
61%|██████ | 17/28 [00:04<00:03, 3.56it/s]
64%|██████▍ | 18/28 [00:05<00:02, 3.56it/s]
68%|██████▊ | 19/28 [00:05<00:02, 3.56it/s]
71%|███████▏ | 20/28 [00:05<00:02, 3.56it/s]
75%|███████▌ | 21/28 [00:05<00:01, 3.56it/s]
79%|███████▊ | 22/28 [00:06<00:01, 3.56it/s]
82%|████████▏ | 23/28 [00:06<00:01, 3.56it/s]
86%|████████▌ | 24/28 [00:06<00:01, 3.55it/s]
89%|████████▉ | 25/28 [00:06<00:00, 3.55it/s]
93%|█████████▎| 26/28 [00:07<00:00, 3.56it/s]
96%|█████████▋| 27/28 [00:07<00:00, 3.55it/s]
100%|██████████| 28/28 [00:07<00:00, 3.55it/s]
100%|██████████| 28/28 [00:07<00:00, 3.58it/s]