Readme
This model doesn't have a readme.
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run joshelgar/rssmurryflux using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"joshelgar/rssmurryflux:cab0a128ac82fee3cc62ca7e957abe2bed0f18418268bf7ad42602bf5973d816",
{
input: {
seed: 50,
model: "dev",
prompt: "RSMRY, A beautiful red sports car parked in front of a steakhouse. The steakhouse has tiki lights outside. Tasteful gentle lighting. Just after sunset. Wide angle.",
go_fast: false,
lora_scale: 1,
megapixels: "1",
num_outputs: 1,
aspect_ratio: "1:1",
output_format: "webp",
guidance_scale: 3.5,
output_quality: 80,
prompt_strength: 0.8,
extra_lora_scale: 1,
num_inference_steps: 28
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run joshelgar/rssmurryflux using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"joshelgar/rssmurryflux:cab0a128ac82fee3cc62ca7e957abe2bed0f18418268bf7ad42602bf5973d816",
input={
"seed": 50,
"model": "dev",
"prompt": "RSMRY, A beautiful red sports car parked in front of a steakhouse. The steakhouse has tiki lights outside. Tasteful gentle lighting. Just after sunset. Wide angle.",
"go_fast": False,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run joshelgar/rssmurryflux using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "cab0a128ac82fee3cc62ca7e957abe2bed0f18418268bf7ad42602bf5973d816",
"input": {
"seed": 50,
"model": "dev",
"prompt": "RSMRY, A beautiful red sports car parked in front of a steakhouse. The steakhouse has tiki lights outside. Tasteful gentle lighting. Just after sunset. Wide angle.",
"go_fast": false,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/joshelgar/rssmurryflux@sha256:cab0a128ac82fee3cc62ca7e957abe2bed0f18418268bf7ad42602bf5973d816 \
-i 'seed=50' \
-i 'model="dev"' \
-i 'prompt="RSMRY, A beautiful red sports car parked in front of a steakhouse. The steakhouse has tiki lights outside. Tasteful gentle lighting. Just after sunset. Wide angle."' \
-i 'go_fast=false' \
-i 'lora_scale=1' \
-i 'megapixels="1"' \
-i 'num_outputs=1' \
-i 'aspect_ratio="1:1"' \
-i 'output_format="webp"' \
-i 'guidance_scale=3.5' \
-i 'output_quality=80' \
-i 'prompt_strength=0.8' \
-i 'extra_lora_scale=1' \
-i 'num_inference_steps=28'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/joshelgar/rssmurryflux@sha256:cab0a128ac82fee3cc62ca7e957abe2bed0f18418268bf7ad42602bf5973d816
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "seed": 50, "model": "dev", "prompt": "RSMRY, A beautiful red sports car parked in front of a steakhouse. The steakhouse has tiki lights outside. Tasteful gentle lighting. Just after sunset. Wide angle.", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2024-08-19T15:48:30.331955Z",
"created_at": "2024-08-19T15:47:41.741000Z",
"data_removed": false,
"error": null,
"id": "5m8mmaww5nrm40chdd9b7c30cm",
"input": {
"seed": 50,
"model": "dev",
"prompt": "RSMRY, A beautiful red sports car parked in front of a steakhouse. The steakhouse has tiki lights outside. Tasteful gentle lighting. Just after sunset. Wide angle.",
"lora_scale": 1,
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 80,
"num_inference_steps": 28
},
"logs": "Using seed: 50\nPrompt: RSMRY, A beautiful red sports car parked in front of a steakhouse. The steakhouse has tiki lights outside. Tasteful gentle lighting. Just after sunset. Wide angle.\ntxt2img mode\nUsing dev model\nLoading LoRA weights\nEnsuring enough disk space...\nFree disk space: 9608973799424\nDownloading weights\n2024-08-19T15:48:12Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/e48a0225aef3f578 url=https://replicate.delivery/yhqm/ZgncjkOYLHamL1Gs6udtl3ZYfEmXaBqBYM8YUXDxidi8zGqJA/trained_model.tar\n2024-08-19T15:48:14Z | INFO | [ Complete ] dest=/src/weights-cache/e48a0225aef3f578 size=\"172 MB\" total_elapsed=1.532s url=https://replicate.delivery/yhqm/ZgncjkOYLHamL1Gs6udtl3ZYfEmXaBqBYM8YUXDxidi8zGqJA/trained_model.tar\nb''\nDownloaded weights in 1.5643501281738281 seconds\nLoRA weights loaded successfully\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.66it/s]\n 7%|▋ | 2/28 [00:00<00:06, 4.23it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.95it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.84it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.78it/s]\n 21%|██▏ | 6/28 [00:01<00:05, 3.74it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.72it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.70it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.69it/s]\n 36%|███▌ | 10/28 [00:02<00:04, 3.69it/s]\n 39%|███▉ | 11/28 [00:02<00:04, 3.69it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.68it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.68it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.68it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.67it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.67it/s]\n 61%|██████ | 17/28 [00:04<00:02, 3.67it/s]\n 64%|██████▍ | 18/28 [00:04<00:02, 3.66it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.67it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.67it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.67it/s]\n 79%|███████▊ | 22/28 [00:05<00:01, 3.67it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.67it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.67it/s]\n 89%|████████▉ | 25/28 [00:06<00:00, 3.67it/s]\n 93%|█████████▎| 26/28 [00:07<00:00, 3.67it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.67it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.67it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.70it/s]",
"metrics": {
"predict_time": 17.813744149,
"total_time": 48.590955
},
"output": [
"https://replicate.delivery/yhqm/NgupYxcdUfSudySGo3mPgb4ufftF8j9rOSnTwOhQdZkcajomA/out-0.webp"
],
"started_at": "2024-08-19T15:48:12.518211Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/5m8mmaww5nrm40chdd9b7c30cm",
"cancel": "https://api.replicate.com/v1/predictions/5m8mmaww5nrm40chdd9b7c30cm/cancel"
},
"version": "cab0a128ac82fee3cc62ca7e957abe2bed0f18418268bf7ad42602bf5973d816"
}
Using seed: 50
Prompt: RSMRY, A beautiful red sports car parked in front of a steakhouse. The steakhouse has tiki lights outside. Tasteful gentle lighting. Just after sunset. Wide angle.
txt2img mode
Using dev model
Loading LoRA weights
Ensuring enough disk space...
Free disk space: 9608973799424
Downloading weights
2024-08-19T15:48:12Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/e48a0225aef3f578 url=https://replicate.delivery/yhqm/ZgncjkOYLHamL1Gs6udtl3ZYfEmXaBqBYM8YUXDxidi8zGqJA/trained_model.tar
2024-08-19T15:48:14Z | INFO | [ Complete ] dest=/src/weights-cache/e48a0225aef3f578 size="172 MB" total_elapsed=1.532s url=https://replicate.delivery/yhqm/ZgncjkOYLHamL1Gs6udtl3ZYfEmXaBqBYM8YUXDxidi8zGqJA/trained_model.tar
b''
Downloaded weights in 1.5643501281738281 seconds
LoRA weights loaded successfully
0%| | 0/28 [00:00<?, ?it/s]
4%|▎ | 1/28 [00:00<00:07, 3.66it/s]
7%|▋ | 2/28 [00:00<00:06, 4.23it/s]
11%|█ | 3/28 [00:00<00:06, 3.95it/s]
14%|█▍ | 4/28 [00:01<00:06, 3.84it/s]
18%|█▊ | 5/28 [00:01<00:06, 3.78it/s]
21%|██▏ | 6/28 [00:01<00:05, 3.74it/s]
25%|██▌ | 7/28 [00:01<00:05, 3.72it/s]
29%|██▊ | 8/28 [00:02<00:05, 3.70it/s]
32%|███▏ | 9/28 [00:02<00:05, 3.69it/s]
36%|███▌ | 10/28 [00:02<00:04, 3.69it/s]
39%|███▉ | 11/28 [00:02<00:04, 3.69it/s]
43%|████▎ | 12/28 [00:03<00:04, 3.68it/s]
46%|████▋ | 13/28 [00:03<00:04, 3.68it/s]
50%|█████ | 14/28 [00:03<00:03, 3.68it/s]
54%|█████▎ | 15/28 [00:04<00:03, 3.67it/s]
57%|█████▋ | 16/28 [00:04<00:03, 3.67it/s]
61%|██████ | 17/28 [00:04<00:02, 3.67it/s]
64%|██████▍ | 18/28 [00:04<00:02, 3.66it/s]
68%|██████▊ | 19/28 [00:05<00:02, 3.67it/s]
71%|███████▏ | 20/28 [00:05<00:02, 3.67it/s]
75%|███████▌ | 21/28 [00:05<00:01, 3.67it/s]
79%|███████▊ | 22/28 [00:05<00:01, 3.67it/s]
82%|████████▏ | 23/28 [00:06<00:01, 3.67it/s]
86%|████████▌ | 24/28 [00:06<00:01, 3.67it/s]
89%|████████▉ | 25/28 [00:06<00:00, 3.67it/s]
93%|█████████▎| 26/28 [00:07<00:00, 3.67it/s]
96%|█████████▋| 27/28 [00:07<00:00, 3.67it/s]
100%|██████████| 28/28 [00:07<00:00, 3.67it/s]
100%|██████████| 28/28 [00:07<00:00, 3.70it/s]
This model runs on Nvidia H100 GPU hardware. We don't yet have enough runs of this model to provide performance information.
This model doesn't have a readme.
This model is warm. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
Using seed: 50
Prompt: RSMRY, A beautiful red sports car parked in front of a steakhouse. The steakhouse has tiki lights outside. Tasteful gentle lighting. Just after sunset. Wide angle.
txt2img mode
Using dev model
Loading LoRA weights
Ensuring enough disk space...
Free disk space: 9608973799424
Downloading weights
2024-08-19T15:48:12Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/e48a0225aef3f578 url=https://replicate.delivery/yhqm/ZgncjkOYLHamL1Gs6udtl3ZYfEmXaBqBYM8YUXDxidi8zGqJA/trained_model.tar
2024-08-19T15:48:14Z | INFO | [ Complete ] dest=/src/weights-cache/e48a0225aef3f578 size="172 MB" total_elapsed=1.532s url=https://replicate.delivery/yhqm/ZgncjkOYLHamL1Gs6udtl3ZYfEmXaBqBYM8YUXDxidi8zGqJA/trained_model.tar
b''
Downloaded weights in 1.5643501281738281 seconds
LoRA weights loaded successfully
0%| | 0/28 [00:00<?, ?it/s]
4%|▎ | 1/28 [00:00<00:07, 3.66it/s]
7%|▋ | 2/28 [00:00<00:06, 4.23it/s]
11%|█ | 3/28 [00:00<00:06, 3.95it/s]
14%|█▍ | 4/28 [00:01<00:06, 3.84it/s]
18%|█▊ | 5/28 [00:01<00:06, 3.78it/s]
21%|██▏ | 6/28 [00:01<00:05, 3.74it/s]
25%|██▌ | 7/28 [00:01<00:05, 3.72it/s]
29%|██▊ | 8/28 [00:02<00:05, 3.70it/s]
32%|███▏ | 9/28 [00:02<00:05, 3.69it/s]
36%|███▌ | 10/28 [00:02<00:04, 3.69it/s]
39%|███▉ | 11/28 [00:02<00:04, 3.69it/s]
43%|████▎ | 12/28 [00:03<00:04, 3.68it/s]
46%|████▋ | 13/28 [00:03<00:04, 3.68it/s]
50%|█████ | 14/28 [00:03<00:03, 3.68it/s]
54%|█████▎ | 15/28 [00:04<00:03, 3.67it/s]
57%|█████▋ | 16/28 [00:04<00:03, 3.67it/s]
61%|██████ | 17/28 [00:04<00:02, 3.67it/s]
64%|██████▍ | 18/28 [00:04<00:02, 3.66it/s]
68%|██████▊ | 19/28 [00:05<00:02, 3.67it/s]
71%|███████▏ | 20/28 [00:05<00:02, 3.67it/s]
75%|███████▌ | 21/28 [00:05<00:01, 3.67it/s]
79%|███████▊ | 22/28 [00:05<00:01, 3.67it/s]
82%|████████▏ | 23/28 [00:06<00:01, 3.67it/s]
86%|████████▌ | 24/28 [00:06<00:01, 3.67it/s]
89%|████████▉ | 25/28 [00:06<00:00, 3.67it/s]
93%|█████████▎| 26/28 [00:07<00:00, 3.67it/s]
96%|█████████▋| 27/28 [00:07<00:00, 3.67it/s]
100%|██████████| 28/28 [00:07<00:00, 3.67it/s]
100%|██████████| 28/28 [00:07<00:00, 3.70it/s]