juergengunz
/
sdxl-openpose-lora
SDXL ControlNet OpenPose with LoRA Support
- Public
- 7.3K runs
Run juergengunz/sdxl-openpose-lora with an API
Use one of our client libraries to get started quickly. Clicking on a library will take you to the Playground tab where you can tweak different inputs, see the results, and copy the corresponding code to use in your own project.
Input schema
The fields you can use to run this model with an API. If you don't give a value for a field its default value will be used.
Field | Type | Default value | Description |
---|---|---|---|
prompt |
string
|
An portrait of an astronaut standing on the moon
|
Input prompt
|
negative_prompt |
string
|
|
Input Negative Prompt
|
image |
string
|
Input image for img2img or inpaint mode
|
|
condition_scale |
number
|
0.9
Max: 1 |
The bigger this number is, the more ControlNet interferes
|
num_outputs |
integer
|
1
Min: 1 Max: 4 |
Number of images to output
|
scheduler |
string
(enum)
|
K_EULER
Options: DDIM, DPMSolverMultistep, HeunDiscrete, KarrasDPM, K_EULER_ANCESTRAL, K_EULER, PNDM |
scheduler
|
num_inference_steps |
integer
|
50
Min: 1 Max: 500 |
Number of denoising steps
|
guidance_scale |
number
|
5
Min: 1 Max: 50 |
Scale for classifier-free guidance
|
seed |
integer
|
Random seed. Leave blank to randomize the seed
|
|
refine |
string
(enum)
|
no_refiner
Options: no_refiner, base_image_refiner |
Whether to use refinement steps or not
|
refine_steps |
integer
|
10
|
For base_image_refiner, the number of steps to refine
|
apply_watermark |
boolean
|
False
|
Applies a watermark to enable determining if an image is generated in downstream applications. If you have other provisions for generating or deploying images safely, you can use this to disable watermarking.
|
lora_scale |
number
|
0.8
Max: 1 |
LoRA additive scale. Only applicable on trained models.
|
lora_weights |
string
|
Replicate LoRA weights to use. Leave blank to use the default weights.
|
{
"type": "object",
"title": "Input",
"properties": {
"seed": {
"type": "integer",
"title": "Seed",
"x-order": 8,
"description": "Random seed. Leave blank to randomize the seed"
},
"image": {
"type": "string",
"title": "Image",
"format": "uri",
"x-order": 2,
"description": "Input image for img2img or inpaint mode"
},
"prompt": {
"type": "string",
"title": "Prompt",
"default": "An portrait of an astronaut standing on the moon",
"x-order": 0,
"description": "Input prompt"
},
"refine": {
"enum": [
"no_refiner",
"base_image_refiner"
],
"type": "string",
"title": "refine",
"description": "Whether to use refinement steps or not",
"default": "no_refiner",
"x-order": 9
},
"scheduler": {
"enum": [
"DDIM",
"DPMSolverMultistep",
"HeunDiscrete",
"KarrasDPM",
"K_EULER_ANCESTRAL",
"K_EULER",
"PNDM"
],
"type": "string",
"title": "scheduler",
"description": "scheduler",
"default": "K_EULER",
"x-order": 5
},
"lora_scale": {
"type": "number",
"title": "Lora Scale",
"default": 0.8,
"maximum": 1,
"minimum": 0,
"x-order": 12,
"description": "LoRA additive scale. Only applicable on trained models."
},
"num_outputs": {
"type": "integer",
"title": "Num Outputs",
"default": 1,
"maximum": 4,
"minimum": 1,
"x-order": 4,
"description": "Number of images to output"
},
"lora_weights": {
"type": "string",
"title": "Lora Weights",
"x-order": 13,
"description": "Replicate LoRA weights to use. Leave blank to use the default weights."
},
"refine_steps": {
"type": "integer",
"title": "Refine Steps",
"default": 10,
"x-order": 10,
"description": "For base_image_refiner, the number of steps to refine"
},
"guidance_scale": {
"type": "number",
"title": "Guidance Scale",
"default": 5,
"maximum": 50,
"minimum": 1,
"x-order": 7,
"description": "Scale for classifier-free guidance"
},
"apply_watermark": {
"type": "boolean",
"title": "Apply Watermark",
"default": false,
"x-order": 11,
"description": "Applies a watermark to enable determining if an image is generated in downstream applications. If you have other provisions for generating or deploying images safely, you can use this to disable watermarking."
},
"condition_scale": {
"type": "number",
"title": "Condition Scale",
"default": 0.9,
"maximum": 1,
"minimum": 0,
"x-order": 3,
"description": "The bigger this number is, the more ControlNet interferes"
},
"negative_prompt": {
"type": "string",
"title": "Negative Prompt",
"default": "",
"x-order": 1,
"description": "Input Negative Prompt"
},
"num_inference_steps": {
"type": "integer",
"title": "Num Inference Steps",
"default": 50,
"maximum": 500,
"minimum": 1,
"x-order": 6,
"description": "Number of denoising steps"
}
}
}
Output schema
The shape of the response you’ll get when you run this model with an API.
{
"type": "array",
"items": {
"type": "string",
"format": "uri"
},
"title": "Output"
}