Readme
This model doesn't have a readme.
Generate thumbnails for Youtube using popular templates and styles
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
import fs from "node:fs";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run justmalhar/flux-thumbnails-v2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"justmalhar/flux-thumbnails-v2:be1f9d9a43c18c9c0d8c9024d285aa5fa343914648a7fe35be291ed04a9dfeb0",
{
input: {
model: "dev",
prompt: "a youtube thumbnail in the style of YTTHUMBNAIL, with text “$5M vs $500M”, a man standing in front of a white ship and a golden cruise",
go_fast: false,
lora_scale: 1,
megapixels: "1",
num_outputs: 4,
aspect_ratio: "16:9",
output_format: "png",
guidance_scale: 3.5,
output_quality: 100,
prompt_strength: 0.8,
extra_lora_scale: 1,
num_inference_steps: 50
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run justmalhar/flux-thumbnails-v2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"justmalhar/flux-thumbnails-v2:be1f9d9a43c18c9c0d8c9024d285aa5fa343914648a7fe35be291ed04a9dfeb0",
input={
"model": "dev",
"prompt": "a youtube thumbnail in the style of YTTHUMBNAIL, with text “$5M vs $500M”, a man standing in front of a white ship and a golden cruise",
"go_fast": False,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 4,
"aspect_ratio": "16:9",
"output_format": "png",
"guidance_scale": 3.5,
"output_quality": 100,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run justmalhar/flux-thumbnails-v2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "justmalhar/flux-thumbnails-v2:be1f9d9a43c18c9c0d8c9024d285aa5fa343914648a7fe35be291ed04a9dfeb0",
"input": {
"model": "dev",
"prompt": "a youtube thumbnail in the style of YTTHUMBNAIL, with text “$5M vs $500M”, a man standing in front of a white ship and a golden cruise",
"go_fast": false,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 4,
"aspect_ratio": "16:9",
"output_format": "png",
"guidance_scale": 3.5,
"output_quality": 100,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2024-10-02T07:09:45.773976Z",
"created_at": "2024-10-02T07:07:37.663000Z",
"data_removed": false,
"error": null,
"id": "r0685pj97xrj60cj9g7a9ks4w8",
"input": {
"model": "dev",
"prompt": "a youtube thumbnail in the style of YTTHUMBNAIL, with text “$5M vs $500M”, a man standing in front of a white ship and a golden cruise",
"lora_scale": 1,
"num_outputs": 4,
"aspect_ratio": "16:9",
"output_format": "png",
"guidance_scale": 3.5,
"output_quality": 100,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 50
},
"logs": "Using seed: 633\nPrompt: a youtube thumbnail in the style of YTTHUMBNAIL, with text “$5M vs $500M”, a man standing in front of a white ship and a golden cruise\n[!] txt2img mode\nUsing dev model\nfree=3091700199424\nDownloading weights\n2024-10-02T07:07:37Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmprcp30fxi/weights url=https://replicate.delivery/yhqm/gSxikFOBTcq0E52L1wkZ3zJf31QSMs1EAWvuUfyUw3qFypiTA/trained_model.tar\n2024-10-02T07:07:39Z | INFO | [ Complete ] dest=/tmp/tmprcp30fxi/weights size=\"175 MB\" total_elapsed=1.421s url=https://replicate.delivery/yhqm/gSxikFOBTcq0E52L1wkZ3zJf31QSMs1EAWvuUfyUw3qFypiTA/trained_model.tar\nDownloaded weights in 1.51s\nLoaded LoRAs in 2.17s\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:02<02:00, 2.45s/it]\n 4%|▍ | 2/50 [00:04<01:44, 2.17s/it]\n 6%|▌ | 3/50 [00:06<01:48, 2.30s/it]\n 8%|▊ | 4/50 [00:09<01:48, 2.37s/it]\n 10%|█ | 5/50 [00:11<01:48, 2.40s/it]\n 12%|█▏ | 6/50 [00:14<01:46, 2.43s/it]\n 14%|█▍ | 7/50 [00:16<01:44, 2.44s/it]\n 16%|█▌ | 8/50 [00:19<01:42, 2.45s/it]\n 18%|█▊ | 9/50 [00:21<01:40, 2.46s/it]\n 20%|██ | 10/50 [00:24<01:38, 2.46s/it]\n 22%|██▏ | 11/50 [00:26<01:36, 2.46s/it]\n 24%|██▍ | 12/50 [00:29<01:33, 2.47s/it]\n 26%|██▌ | 13/50 [00:31<01:31, 2.47s/it]\n 28%|██▊ | 14/50 [00:34<01:28, 2.47s/it]\n 30%|███ | 15/50 [00:36<01:26, 2.47s/it]\n 32%|███▏ | 16/50 [00:39<01:24, 2.47s/it]\n 34%|███▍ | 17/50 [00:41<01:21, 2.47s/it]\n 36%|███▌ | 18/50 [00:43<01:19, 2.47s/it]\n 38%|███▊ | 19/50 [00:46<01:16, 2.47s/it]\n 40%|████ | 20/50 [00:48<01:14, 2.48s/it]\n 42%|████▏ | 21/50 [00:51<01:11, 2.48s/it]\n 44%|████▍ | 22/50 [00:53<01:09, 2.48s/it]\n 46%|████▌ | 23/50 [00:56<01:06, 2.48s/it]\n 48%|████▊ | 24/50 [00:58<01:04, 2.48s/it]\n 50%|█████ | 25/50 [01:01<01:01, 2.48s/it]\n 52%|█████▏ | 26/50 [01:03<00:59, 2.48s/it]\n 54%|█████▍ | 27/50 [01:06<00:56, 2.48s/it]\n 56%|█████▌ | 28/50 [01:08<00:54, 2.48s/it]\n 58%|█████▊ | 29/50 [01:11<00:52, 2.48s/it]\n 60%|██████ | 30/50 [01:13<00:49, 2.48s/it]\n 62%|██████▏ | 31/50 [01:16<00:47, 2.48s/it]\n 64%|██████▍ | 32/50 [01:18<00:44, 2.48s/it]\n 66%|██████▌ | 33/50 [01:21<00:42, 2.48s/it]\n 68%|██████▊ | 34/50 [01:23<00:39, 2.48s/it]\n 70%|███████ | 35/50 [01:26<00:37, 2.48s/it]\n 72%|███████▏ | 36/50 [01:28<00:34, 2.48s/it]\n 74%|███████▍ | 37/50 [01:31<00:32, 2.48s/it]\n 76%|███████▌ | 38/50 [01:33<00:29, 2.48s/it]\n 78%|███████▊ | 39/50 [01:35<00:27, 2.48s/it]\n 80%|████████ | 40/50 [01:38<00:24, 2.48s/it]\n 82%|████████▏ | 41/50 [01:40<00:22, 2.48s/it]\n 84%|████████▍ | 42/50 [01:43<00:19, 2.48s/it]\n 86%|████████▌ | 43/50 [01:45<00:17, 2.48s/it]\n 88%|████████▊ | 44/50 [01:48<00:14, 2.48s/it]\n 90%|█████████ | 45/50 [01:50<00:12, 2.48s/it]\n 92%|█████████▏| 46/50 [01:53<00:09, 2.48s/it]\n 94%|█████████▍| 47/50 [01:55<00:07, 2.48s/it]\n 96%|█████████▌| 48/50 [01:58<00:04, 2.48s/it]\n 98%|█████████▊| 49/50 [02:00<00:02, 2.48s/it]\n100%|██████████| 50/50 [02:03<00:00, 2.48s/it]\n100%|██████████| 50/50 [02:03<00:00, 2.47s/it]",
"metrics": {
"predict_time": 128.100749148,
"total_time": 128.110976
},
"output": [
"https://replicate.delivery/yhqm/oLgrfpJw70WmRirfwl7P14PLelvVBoqPxFe03ait5fecujq4E/out-0.png",
"https://replicate.delivery/yhqm/oQwGjjeXRehbJ090A5UwO9CeED0QdaTrQKd2LaKJ0DazdUFnA/out-1.png",
"https://replicate.delivery/yhqm/R26YzcE7fp1NPSWzpVMZT1Sgaypxaepha1v6Fy123GL5OqiTA/out-2.png",
"https://replicate.delivery/yhqm/szJFiXebPlQjACgvkmIkeBDm0pt48uMSOdBBR5BhUcg5OqiTA/out-3.png"
],
"started_at": "2024-10-02T07:07:37.673227Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/r0685pj97xrj60cj9g7a9ks4w8",
"cancel": "https://api.replicate.com/v1/predictions/r0685pj97xrj60cj9g7a9ks4w8/cancel"
},
"version": "be1f9d9a43c18c9c0d8c9024d285aa5fa343914648a7fe35be291ed04a9dfeb0"
}
Using seed: 633
Prompt: a youtube thumbnail in the style of YTTHUMBNAIL, with text “$5M vs $500M”, a man standing in front of a white ship and a golden cruise
[!] txt2img mode
Using dev model
free=3091700199424
Downloading weights
2024-10-02T07:07:37Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmprcp30fxi/weights url=https://replicate.delivery/yhqm/gSxikFOBTcq0E52L1wkZ3zJf31QSMs1EAWvuUfyUw3qFypiTA/trained_model.tar
2024-10-02T07:07:39Z | INFO | [ Complete ] dest=/tmp/tmprcp30fxi/weights size="175 MB" total_elapsed=1.421s url=https://replicate.delivery/yhqm/gSxikFOBTcq0E52L1wkZ3zJf31QSMs1EAWvuUfyUw3qFypiTA/trained_model.tar
Downloaded weights in 1.51s
Loaded LoRAs in 2.17s
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:02<02:00, 2.45s/it]
4%|▍ | 2/50 [00:04<01:44, 2.17s/it]
6%|▌ | 3/50 [00:06<01:48, 2.30s/it]
8%|▊ | 4/50 [00:09<01:48, 2.37s/it]
10%|█ | 5/50 [00:11<01:48, 2.40s/it]
12%|█▏ | 6/50 [00:14<01:46, 2.43s/it]
14%|█▍ | 7/50 [00:16<01:44, 2.44s/it]
16%|█▌ | 8/50 [00:19<01:42, 2.45s/it]
18%|█▊ | 9/50 [00:21<01:40, 2.46s/it]
20%|██ | 10/50 [00:24<01:38, 2.46s/it]
22%|██▏ | 11/50 [00:26<01:36, 2.46s/it]
24%|██▍ | 12/50 [00:29<01:33, 2.47s/it]
26%|██▌ | 13/50 [00:31<01:31, 2.47s/it]
28%|██▊ | 14/50 [00:34<01:28, 2.47s/it]
30%|███ | 15/50 [00:36<01:26, 2.47s/it]
32%|███▏ | 16/50 [00:39<01:24, 2.47s/it]
34%|███▍ | 17/50 [00:41<01:21, 2.47s/it]
36%|███▌ | 18/50 [00:43<01:19, 2.47s/it]
38%|███▊ | 19/50 [00:46<01:16, 2.47s/it]
40%|████ | 20/50 [00:48<01:14, 2.48s/it]
42%|████▏ | 21/50 [00:51<01:11, 2.48s/it]
44%|████▍ | 22/50 [00:53<01:09, 2.48s/it]
46%|████▌ | 23/50 [00:56<01:06, 2.48s/it]
48%|████▊ | 24/50 [00:58<01:04, 2.48s/it]
50%|█████ | 25/50 [01:01<01:01, 2.48s/it]
52%|█████▏ | 26/50 [01:03<00:59, 2.48s/it]
54%|█████▍ | 27/50 [01:06<00:56, 2.48s/it]
56%|█████▌ | 28/50 [01:08<00:54, 2.48s/it]
58%|█████▊ | 29/50 [01:11<00:52, 2.48s/it]
60%|██████ | 30/50 [01:13<00:49, 2.48s/it]
62%|██████▏ | 31/50 [01:16<00:47, 2.48s/it]
64%|██████▍ | 32/50 [01:18<00:44, 2.48s/it]
66%|██████▌ | 33/50 [01:21<00:42, 2.48s/it]
68%|██████▊ | 34/50 [01:23<00:39, 2.48s/it]
70%|███████ | 35/50 [01:26<00:37, 2.48s/it]
72%|███████▏ | 36/50 [01:28<00:34, 2.48s/it]
74%|███████▍ | 37/50 [01:31<00:32, 2.48s/it]
76%|███████▌ | 38/50 [01:33<00:29, 2.48s/it]
78%|███████▊ | 39/50 [01:35<00:27, 2.48s/it]
80%|████████ | 40/50 [01:38<00:24, 2.48s/it]
82%|████████▏ | 41/50 [01:40<00:22, 2.48s/it]
84%|████████▍ | 42/50 [01:43<00:19, 2.48s/it]
86%|████████▌ | 43/50 [01:45<00:17, 2.48s/it]
88%|████████▊ | 44/50 [01:48<00:14, 2.48s/it]
90%|█████████ | 45/50 [01:50<00:12, 2.48s/it]
92%|█████████▏| 46/50 [01:53<00:09, 2.48s/it]
94%|█████████▍| 47/50 [01:55<00:07, 2.48s/it]
96%|█████████▌| 48/50 [01:58<00:04, 2.48s/it]
98%|█████████▊| 49/50 [02:00<00:02, 2.48s/it]
100%|██████████| 50/50 [02:03<00:00, 2.48s/it]
100%|██████████| 50/50 [02:03<00:00, 2.47s/it]
This model costs approximately $0.022 to run on Replicate, or 45 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.
This model runs on Nvidia H100 GPU hardware. Predictions typically complete within 15 seconds.
This model doesn't have a readme.
This model is warm. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
Using seed: 633
Prompt: a youtube thumbnail in the style of YTTHUMBNAIL, with text “$5M vs $500M”, a man standing in front of a white ship and a golden cruise
[!] txt2img mode
Using dev model
free=3091700199424
Downloading weights
2024-10-02T07:07:37Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmprcp30fxi/weights url=https://replicate.delivery/yhqm/gSxikFOBTcq0E52L1wkZ3zJf31QSMs1EAWvuUfyUw3qFypiTA/trained_model.tar
2024-10-02T07:07:39Z | INFO | [ Complete ] dest=/tmp/tmprcp30fxi/weights size="175 MB" total_elapsed=1.421s url=https://replicate.delivery/yhqm/gSxikFOBTcq0E52L1wkZ3zJf31QSMs1EAWvuUfyUw3qFypiTA/trained_model.tar
Downloaded weights in 1.51s
Loaded LoRAs in 2.17s
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:02<02:00, 2.45s/it]
4%|▍ | 2/50 [00:04<01:44, 2.17s/it]
6%|▌ | 3/50 [00:06<01:48, 2.30s/it]
8%|▊ | 4/50 [00:09<01:48, 2.37s/it]
10%|█ | 5/50 [00:11<01:48, 2.40s/it]
12%|█▏ | 6/50 [00:14<01:46, 2.43s/it]
14%|█▍ | 7/50 [00:16<01:44, 2.44s/it]
16%|█▌ | 8/50 [00:19<01:42, 2.45s/it]
18%|█▊ | 9/50 [00:21<01:40, 2.46s/it]
20%|██ | 10/50 [00:24<01:38, 2.46s/it]
22%|██▏ | 11/50 [00:26<01:36, 2.46s/it]
24%|██▍ | 12/50 [00:29<01:33, 2.47s/it]
26%|██▌ | 13/50 [00:31<01:31, 2.47s/it]
28%|██▊ | 14/50 [00:34<01:28, 2.47s/it]
30%|███ | 15/50 [00:36<01:26, 2.47s/it]
32%|███▏ | 16/50 [00:39<01:24, 2.47s/it]
34%|███▍ | 17/50 [00:41<01:21, 2.47s/it]
36%|███▌ | 18/50 [00:43<01:19, 2.47s/it]
38%|███▊ | 19/50 [00:46<01:16, 2.47s/it]
40%|████ | 20/50 [00:48<01:14, 2.48s/it]
42%|████▏ | 21/50 [00:51<01:11, 2.48s/it]
44%|████▍ | 22/50 [00:53<01:09, 2.48s/it]
46%|████▌ | 23/50 [00:56<01:06, 2.48s/it]
48%|████▊ | 24/50 [00:58<01:04, 2.48s/it]
50%|█████ | 25/50 [01:01<01:01, 2.48s/it]
52%|█████▏ | 26/50 [01:03<00:59, 2.48s/it]
54%|█████▍ | 27/50 [01:06<00:56, 2.48s/it]
56%|█████▌ | 28/50 [01:08<00:54, 2.48s/it]
58%|█████▊ | 29/50 [01:11<00:52, 2.48s/it]
60%|██████ | 30/50 [01:13<00:49, 2.48s/it]
62%|██████▏ | 31/50 [01:16<00:47, 2.48s/it]
64%|██████▍ | 32/50 [01:18<00:44, 2.48s/it]
66%|██████▌ | 33/50 [01:21<00:42, 2.48s/it]
68%|██████▊ | 34/50 [01:23<00:39, 2.48s/it]
70%|███████ | 35/50 [01:26<00:37, 2.48s/it]
72%|███████▏ | 36/50 [01:28<00:34, 2.48s/it]
74%|███████▍ | 37/50 [01:31<00:32, 2.48s/it]
76%|███████▌ | 38/50 [01:33<00:29, 2.48s/it]
78%|███████▊ | 39/50 [01:35<00:27, 2.48s/it]
80%|████████ | 40/50 [01:38<00:24, 2.48s/it]
82%|████████▏ | 41/50 [01:40<00:22, 2.48s/it]
84%|████████▍ | 42/50 [01:43<00:19, 2.48s/it]
86%|████████▌ | 43/50 [01:45<00:17, 2.48s/it]
88%|████████▊ | 44/50 [01:48<00:14, 2.48s/it]
90%|█████████ | 45/50 [01:50<00:12, 2.48s/it]
92%|█████████▏| 46/50 [01:53<00:09, 2.48s/it]
94%|█████████▍| 47/50 [01:55<00:07, 2.48s/it]
96%|█████████▌| 48/50 [01:58<00:04, 2.48s/it]
98%|█████████▊| 49/50 [02:00<00:02, 2.48s/it]
100%|██████████| 50/50 [02:03<00:00, 2.48s/it]
100%|██████████| 50/50 [02:03<00:00, 2.47s/it]