nsdxl
Input prompt
Default: "An astronaut riding a rainbow unicorn"
Input Negative Prompt
Default: ""
Input image for img2img or inpaint mode
Input mask for inpaint mode. Black areas will be preserved, white areas will be inpainted.
Width of output image
Default: 1024
Height of output image
Number of images to output.
Default: 1
scheduler
Default: "K_EULER"
Number of denoising steps
Default: 50
Scale for classifier-free guidance
Default: 7.5
Prompt strength when using img2img / inpaint. 1.0 corresponds to full destruction of information in image
Default: 0.8
Random seed. Leave blank to randomize the seed
Which refine style to use
Default: "no_refiner"
For expert_ensemble_refiner, the fraction of noise to use
For base_image_refiner, the number of steps to refine, defaults to num_inference_steps
Applies a watermark to enable determining if an image is generated in downstream applications. If you have other provisions for generating or deploying images safely, you can use this to disable watermarking.
Default: true
LoRA additive scale. Only applicable on trained models.
Default: 0.6
This model’s safety checker can’t be disabled when running on the website. Learn more about platform safety on Replicate.
Disable safety checker for generated images. This feature is only available through the API. See [https://replicate.com/docs/how-does-replicate-work#safety](https://replicate.com/docs/how-does-replicate-work#safety)
Default: false
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run kevsjh/nsdxl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "kevsjh/nsdxl:df5a35d9ebc8ea9c436614d9879a5aeb7de77b036801c35e238b96120167543f", { input: { width: 1024, height: 1024, prompt: "astronaut riding a horse, NSDXL", refine: "no_refiner", scheduler: "KarrasDPM", lora_scale: 0.8, num_outputs: 1, guidance_scale: 7.5, apply_watermark: false, high_noise_frac: 0.8, negative_prompt: "", prompt_strength: 0.8, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
import replicate
output = replicate.run( "kevsjh/nsdxl:df5a35d9ebc8ea9c436614d9879a5aeb7de77b036801c35e238b96120167543f", input={ "width": 1024, "height": 1024, "prompt": "astronaut riding a horse, NSDXL", "refine": "no_refiner", "scheduler": "KarrasDPM", "lora_scale": 0.8, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": False, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "kevsjh/nsdxl:df5a35d9ebc8ea9c436614d9879a5aeb7de77b036801c35e238b96120167543f", "input": { "width": 1024, "height": 1024, "prompt": "astronaut riding a horse, NSDXL", "refine": "no_refiner", "scheduler": "KarrasDPM", "lora_scale": 0.8, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
{ "completed_at": "2024-06-06T11:41:28.745401Z", "created_at": "2024-06-06T11:41:12.979000Z", "data_removed": false, "error": null, "id": "1sz7x7tvjdrgj0cfxnda34ap9w", "input": { "width": 1024, "height": 1024, "prompt": "astronaut riding a horse, NSDXL", "refine": "no_refiner", "scheduler": "KarrasDPM", "lora_scale": 0.8, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }, "logs": "Using seed: 52534\nskipping loading .. weights already loaded\nPrompt: astronaut riding a horse, <s0><s1>\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:11, 4.34it/s]\n 4%|▍ | 2/50 [00:00<00:09, 5.32it/s]\n 6%|▌ | 3/50 [00:00<00:09, 4.81it/s]\n 8%|▊ | 4/50 [00:00<00:09, 4.60it/s]\n 10%|█ | 5/50 [00:01<00:10, 4.48it/s]\n 12%|█▏ | 6/50 [00:01<00:09, 4.42it/s]\n 14%|█▍ | 7/50 [00:01<00:09, 4.38it/s]\n 16%|█▌ | 8/50 [00:01<00:09, 4.35it/s]\n 18%|█▊ | 9/50 [00:02<00:09, 4.33it/s]\n 20%|██ | 10/50 [00:02<00:09, 4.32it/s]\n 22%|██▏ | 11/50 [00:02<00:09, 4.31it/s]\n 24%|██▍ | 12/50 [00:02<00:08, 4.30it/s]\n 26%|██▌ | 13/50 [00:02<00:08, 4.30it/s]\n 28%|██▊ | 14/50 [00:03<00:08, 4.29it/s]\n 30%|███ | 15/50 [00:03<00:08, 4.29it/s]\n 32%|███▏ | 16/50 [00:03<00:07, 4.29it/s]\n 34%|███▍ | 17/50 [00:03<00:07, 4.28it/s]\n 36%|███▌ | 18/50 [00:04<00:07, 4.29it/s]\n 38%|███▊ | 19/50 [00:04<00:07, 4.28it/s]\n 40%|████ | 20/50 [00:04<00:07, 4.28it/s]\n 42%|████▏ | 21/50 [00:04<00:06, 4.28it/s]\n 44%|████▍ | 22/50 [00:05<00:06, 4.29it/s]\n 46%|████▌ | 23/50 [00:05<00:06, 4.28it/s]\n 48%|████▊ | 24/50 [00:05<00:06, 4.28it/s]\n 50%|█████ | 25/50 [00:05<00:05, 4.28it/s]\n 52%|█████▏ | 26/50 [00:05<00:05, 4.28it/s]\n 54%|█████▍ | 27/50 [00:06<00:05, 4.28it/s]\n 56%|█████▌ | 28/50 [00:06<00:05, 4.28it/s]\n 58%|█████▊ | 29/50 [00:06<00:04, 4.28it/s]\n 60%|██████ | 30/50 [00:06<00:04, 4.28it/s]\n 62%|██████▏ | 31/50 [00:07<00:04, 4.28it/s]\n 64%|██████▍ | 32/50 [00:07<00:04, 4.28it/s]\n 66%|██████▌ | 33/50 [00:07<00:03, 4.28it/s]\n 68%|██████▊ | 34/50 [00:07<00:03, 4.28it/s]\n 70%|███████ | 35/50 [00:08<00:03, 4.27it/s]\n 72%|███████▏ | 36/50 [00:08<00:03, 4.27it/s]\n 74%|███████▍ | 37/50 [00:08<00:03, 4.27it/s]\n 76%|███████▌ | 38/50 [00:08<00:02, 4.27it/s]\n 78%|███████▊ | 39/50 [00:09<00:02, 4.27it/s]\n 80%|████████ | 40/50 [00:09<00:02, 4.27it/s]\n 82%|████████▏ | 41/50 [00:09<00:02, 4.27it/s]\n 84%|████████▍ | 42/50 [00:09<00:01, 4.27it/s]\n 86%|████████▌ | 43/50 [00:09<00:01, 4.27it/s]\n 88%|████████▊ | 44/50 [00:10<00:01, 4.27it/s]\n 90%|█████████ | 45/50 [00:10<00:01, 4.28it/s]\n 92%|█████████▏| 46/50 [00:10<00:00, 4.27it/s]\n 94%|█████████▍| 47/50 [00:10<00:00, 4.28it/s]\n 96%|█████████▌| 48/50 [00:11<00:00, 4.28it/s]\n 98%|█████████▊| 49/50 [00:11<00:00, 4.28it/s]\n100%|██████████| 50/50 [00:11<00:00, 4.29it/s]\n100%|██████████| 50/50 [00:11<00:00, 4.31it/s]", "metrics": { "predict_time": 13.886788, "total_time": 15.766401 }, "output": [ "https://replicate.delivery/pbxt/EIM24xGmCkIeIKWoy8JYDOf6FanM7Zel4c6pMjTfOhjcmUvLB/out-0.png" ], "started_at": "2024-06-06T11:41:14.858613Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/1sz7x7tvjdrgj0cfxnda34ap9w", "cancel": "https://api.replicate.com/v1/predictions/1sz7x7tvjdrgj0cfxnda34ap9w/cancel" }, "version": "df5a35d9ebc8ea9c436614d9879a5aeb7de77b036801c35e238b96120167543f" }
Using seed: 52534 skipping loading .. weights already loaded Prompt: astronaut riding a horse, <s0><s1> txt2img mode 0%| | 0/50 [00:00<?, ?it/s] 2%|▏ | 1/50 [00:00<00:11, 4.34it/s] 4%|▍ | 2/50 [00:00<00:09, 5.32it/s] 6%|▌ | 3/50 [00:00<00:09, 4.81it/s] 8%|▊ | 4/50 [00:00<00:09, 4.60it/s] 10%|█ | 5/50 [00:01<00:10, 4.48it/s] 12%|█▏ | 6/50 [00:01<00:09, 4.42it/s] 14%|█▍ | 7/50 [00:01<00:09, 4.38it/s] 16%|█▌ | 8/50 [00:01<00:09, 4.35it/s] 18%|█▊ | 9/50 [00:02<00:09, 4.33it/s] 20%|██ | 10/50 [00:02<00:09, 4.32it/s] 22%|██▏ | 11/50 [00:02<00:09, 4.31it/s] 24%|██▍ | 12/50 [00:02<00:08, 4.30it/s] 26%|██▌ | 13/50 [00:02<00:08, 4.30it/s] 28%|██▊ | 14/50 [00:03<00:08, 4.29it/s] 30%|███ | 15/50 [00:03<00:08, 4.29it/s] 32%|███▏ | 16/50 [00:03<00:07, 4.29it/s] 34%|███▍ | 17/50 [00:03<00:07, 4.28it/s] 36%|███▌ | 18/50 [00:04<00:07, 4.29it/s] 38%|███▊ | 19/50 [00:04<00:07, 4.28it/s] 40%|████ | 20/50 [00:04<00:07, 4.28it/s] 42%|████▏ | 21/50 [00:04<00:06, 4.28it/s] 44%|████▍ | 22/50 [00:05<00:06, 4.29it/s] 46%|████▌ | 23/50 [00:05<00:06, 4.28it/s] 48%|████▊ | 24/50 [00:05<00:06, 4.28it/s] 50%|█████ | 25/50 [00:05<00:05, 4.28it/s] 52%|█████▏ | 26/50 [00:05<00:05, 4.28it/s] 54%|█████▍ | 27/50 [00:06<00:05, 4.28it/s] 56%|█████▌ | 28/50 [00:06<00:05, 4.28it/s] 58%|█████▊ | 29/50 [00:06<00:04, 4.28it/s] 60%|██████ | 30/50 [00:06<00:04, 4.28it/s] 62%|██████▏ | 31/50 [00:07<00:04, 4.28it/s] 64%|██████▍ | 32/50 [00:07<00:04, 4.28it/s] 66%|██████▌ | 33/50 [00:07<00:03, 4.28it/s] 68%|██████▊ | 34/50 [00:07<00:03, 4.28it/s] 70%|███████ | 35/50 [00:08<00:03, 4.27it/s] 72%|███████▏ | 36/50 [00:08<00:03, 4.27it/s] 74%|███████▍ | 37/50 [00:08<00:03, 4.27it/s] 76%|███████▌ | 38/50 [00:08<00:02, 4.27it/s] 78%|███████▊ | 39/50 [00:09<00:02, 4.27it/s] 80%|████████ | 40/50 [00:09<00:02, 4.27it/s] 82%|████████▏ | 41/50 [00:09<00:02, 4.27it/s] 84%|████████▍ | 42/50 [00:09<00:01, 4.27it/s] 86%|████████▌ | 43/50 [00:09<00:01, 4.27it/s] 88%|████████▊ | 44/50 [00:10<00:01, 4.27it/s] 90%|█████████ | 45/50 [00:10<00:01, 4.28it/s] 92%|█████████▏| 46/50 [00:10<00:00, 4.27it/s] 94%|█████████▍| 47/50 [00:10<00:00, 4.28it/s] 96%|█████████▌| 48/50 [00:11<00:00, 4.28it/s] 98%|█████████▊| 49/50 [00:11<00:00, 4.28it/s] 100%|██████████| 50/50 [00:11<00:00, 4.29it/s] 100%|██████████| 50/50 [00:11<00:00, 4.31it/s]
View more examples
This model runs on Nvidia L40S GPU hardware. We don't yet have enough runs of this model to provide performance information.
This model doesn't have a readme.
This model is booted and ready for API calls.
This model runs on L40S hardware which costs $0.000975 per second
Choose a file from your machine
Hint: you can also drag files onto the input