lastmover
/
purr2
Model trained to make PURR artwork
- Public
- 129 runs
-
H100
- GitHub
Prediction
lastmover/purr2:19e5239358c8ecbc81acad82cd146ba16b5c6f4b52375cd170db578ece68b0f5IDkkhk9tt45srm80cmnabv871gecStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- a digital illustration of PURR reading a book in a cozy library
- go_fast
- lora_scale
- 1
- megapixels
- 1
- num_outputs
- 4
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3
- output_quality
- 80
- prompt_strength
- 1
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "a digital illustration of PURR reading a book in a cozy library", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 1, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run lastmover/purr2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "lastmover/purr2:19e5239358c8ecbc81acad82cd146ba16b5c6f4b52375cd170db578ece68b0f5", { input: { model: "dev", prompt: "a digital illustration of PURR reading a book in a cozy library", go_fast: false, lora_scale: 1, megapixels: "1", num_outputs: 4, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3, output_quality: 80, prompt_strength: 1, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run lastmover/purr2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "lastmover/purr2:19e5239358c8ecbc81acad82cd146ba16b5c6f4b52375cd170db578ece68b0f5", input={ "model": "dev", "prompt": "a digital illustration of PURR reading a book in a cozy library", "go_fast": False, "lora_scale": 1, "megapixels": "1", "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 1, "extra_lora_scale": 1, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run lastmover/purr2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "19e5239358c8ecbc81acad82cd146ba16b5c6f4b52375cd170db578ece68b0f5", "input": { "model": "dev", "prompt": "a digital illustration of PURR reading a book in a cozy library", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 1, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2025-01-28T01:47:35.589146Z", "created_at": "2025-01-28T01:47:07.694000Z", "data_removed": false, "error": null, "id": "kkhk9tt45srm80cmnabv871gec", "input": { "model": "dev", "prompt": "a digital illustration of PURR reading a book in a cozy library", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 1, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "2025-01-28 01:47:08.531 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys\n2025-01-28 01:47:08.532 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted\nApplying LoRA: 0%| | 0/304 [00:00<?, ?it/s]\nApplying LoRA: 89%|████████▉ | 270/304 [00:00<00:00, 2674.82it/s]\nApplying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2606.04it/s]\n2025-01-28 01:47:08.649 | SUCCESS | fp8.lora_loading:unload_loras:564 - LoRAs unloaded in 0.12s\nfree=28996837507072\nDownloading weights\n2025-01-28T01:47:08Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpkqjpahhz/weights url=https://replicate.delivery/xezq/nENtU0FT0XI8P5x2bRj3qRQQsMbM2kWgct4oGbvB49UjXXCF/trained_model.tar\n2025-01-28T01:47:11Z | INFO | [ Complete ] dest=/tmp/tmpkqjpahhz/weights size=\"215 MB\" total_elapsed=2.556s url=https://replicate.delivery/xezq/nENtU0FT0XI8P5x2bRj3qRQQsMbM2kWgct4oGbvB49UjXXCF/trained_model.tar\nDownloaded weights in 2.58s\n2025-01-28 01:47:11.233 | INFO | fp8.lora_loading:convert_lora_weights:498 - Loading LoRA weights for /src/weights-cache/7a19394bea9acc6e\n2025-01-28 01:47:11.314 | INFO | fp8.lora_loading:convert_lora_weights:519 - LoRA weights loaded\n2025-01-28 01:47:11.315 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys\n2025-01-28 01:47:11.315 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted\nApplying LoRA: 0%| | 0/304 [00:00<?, ?it/s]\nApplying LoRA: 92%|█████████▏| 281/304 [00:00<00:00, 2803.59it/s]\nApplying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2752.52it/s]\n2025-01-28 01:47:11.426 | SUCCESS | fp8.lora_loading:load_lora:539 - LoRA applied in 0.19s\nUsing seed: 3892\n0it [00:00, ?it/s]\n1it [00:00, 8.36it/s]\n2it [00:00, 5.86it/s]\n3it [00:00, 5.34it/s]\n4it [00:00, 5.12it/s]\n5it [00:00, 4.99it/s]\n6it [00:01, 4.91it/s]\n7it [00:01, 4.88it/s]\n8it [00:01, 4.85it/s]\n9it [00:01, 4.84it/s]\n10it [00:01, 4.82it/s]\n11it [00:02, 4.81it/s]\n12it [00:02, 4.81it/s]\n13it [00:02, 4.81it/s]\n14it [00:02, 4.82it/s]\n15it [00:03, 4.81it/s]\n16it [00:03, 4.81it/s]\n17it [00:03, 4.80it/s]\n18it [00:03, 4.80it/s]\n19it [00:03, 4.81it/s]\n20it [00:04, 4.81it/s]\n21it [00:04, 4.80it/s]\n22it [00:04, 4.79it/s]\n23it [00:04, 4.79it/s]\n24it [00:04, 4.79it/s]\n25it [00:05, 4.79it/s]\n26it [00:05, 4.80it/s]\n27it [00:05, 4.79it/s]\n28it [00:05, 4.80it/s]\n28it [00:05, 4.88it/s]\n0it [00:00, ?it/s]\n1it [00:00, 4.85it/s]\n2it [00:00, 4.82it/s]\n3it [00:00, 4.81it/s]\n4it [00:00, 4.80it/s]\n5it [00:01, 4.79it/s]\n6it [00:01, 4.79it/s]\n7it [00:01, 4.78it/s]\n8it [00:01, 4.78it/s]\n9it [00:01, 4.78it/s]\n10it [00:02, 4.78it/s]\n11it [00:02, 4.78it/s]\n12it [00:02, 4.77it/s]\n13it [00:02, 4.77it/s]\n14it [00:02, 4.76it/s]\n15it [00:03, 4.77it/s]\n16it [00:03, 4.77it/s]\n17it [00:03, 4.76it/s]\n18it [00:03, 4.76it/s]\n19it [00:03, 4.76it/s]\n20it [00:04, 4.77it/s]\n21it [00:04, 4.79it/s]\n22it [00:04, 4.78it/s]\n23it [00:04, 4.77it/s]\n24it [00:05, 4.78it/s]\n25it [00:05, 4.77it/s]\n26it [00:05, 4.77it/s]\n27it [00:05, 4.78it/s]\n28it [00:05, 4.79it/s]\n28it [00:05, 4.78it/s]\n0it [00:00, ?it/s]\n1it [00:00, 4.82it/s]\n2it [00:00, 4.79it/s]\n3it [00:00, 4.78it/s]\n4it [00:00, 4.78it/s]\n5it [00:01, 4.79it/s]\n6it [00:01, 4.79it/s]\n7it [00:01, 4.79it/s]\n8it [00:01, 4.79it/s]\n9it [00:01, 4.79it/s]\n10it [00:02, 4.79it/s]\n11it [00:02, 4.79it/s]\n12it [00:02, 4.79it/s]\n13it [00:02, 4.79it/s]\n14it [00:02, 4.80it/s]\n15it [00:03, 4.79it/s]\n16it [00:03, 4.79it/s]\n17it [00:03, 4.78it/s]\n18it [00:03, 4.78it/s]\n19it [00:03, 4.78it/s]\n20it [00:04, 4.78it/s]\n21it [00:04, 4.78it/s]\n22it [00:04, 4.79it/s]\n23it [00:04, 4.79it/s]\n24it [00:05, 4.79it/s]\n25it [00:05, 4.78it/s]\n26it [00:05, 4.78it/s]\n27it [00:05, 4.78it/s]\n28it [00:05, 4.77it/s]\n28it [00:05, 4.79it/s]\n0it [00:00, ?it/s]\n1it [00:00, 4.83it/s]\n2it [00:00, 4.81it/s]\n3it [00:00, 4.81it/s]\n4it [00:00, 4.81it/s]\n5it [00:01, 4.81it/s]\n6it [00:01, 4.79it/s]\n7it [00:01, 4.79it/s]\n8it [00:01, 4.78it/s]\n9it [00:01, 4.79it/s]\n10it [00:02, 4.79it/s]\n11it [00:02, 4.79it/s]\n12it [00:02, 4.79it/s]\n13it [00:02, 4.78it/s]\n14it [00:02, 4.77it/s]\n15it [00:03, 4.77it/s]\n16it [00:03, 4.78it/s]\n17it [00:03, 4.78it/s]\n18it [00:03, 4.78it/s]\n19it [00:03, 4.78it/s]\n20it [00:04, 4.78it/s]\n21it [00:04, 4.78it/s]\n22it [00:04, 4.78it/s]\n23it [00:04, 4.78it/s]\n24it [00:05, 4.78it/s]\n25it [00:05, 4.77it/s]\n26it [00:05, 4.78it/s]\n27it [00:05, 4.79it/s]\n28it [00:05, 4.79it/s]\n28it [00:05, 4.79it/s]\nTotal safe images: 4 out of 4", "metrics": { "predict_time": 27.056352393, "total_time": 27.895146 }, "output": [ "https://replicate.delivery/xezq/L8idWx36Or7TCJJl4lpJyYR52DL6F5hansBLhrpkxe7bSvEKA/out-0.webp", "https://replicate.delivery/xezq/E8kbFzi5n4JADN5UhQAFyhGcAJ2M5jilXPgzJxMrkuyNpXCF/out-1.webp", "https://replicate.delivery/xezq/lCl11DVVs4JAH1KUOG1Rn0ppx7r7KEyhPldGn3Ftu3ebSvEKA/out-2.webp", "https://replicate.delivery/xezq/oHMI57Hmzw6hFJjAybf3sSRMtvLfwfCkeLTbkjvU8mIfm0LhC/out-3.webp" ], "started_at": "2025-01-28T01:47:08.532793Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/bsvm-pe3nbrvn4voalo65t4dl3pgfd4a26une6mtj5c6kimw6wztf64ga", "get": "https://api.replicate.com/v1/predictions/kkhk9tt45srm80cmnabv871gec", "cancel": "https://api.replicate.com/v1/predictions/kkhk9tt45srm80cmnabv871gec/cancel" }, "version": "19e5239358c8ecbc81acad82cd146ba16b5c6f4b52375cd170db578ece68b0f5" }
Generated in2025-01-28 01:47:08.531 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys 2025-01-28 01:47:08.532 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted Applying LoRA: 0%| | 0/304 [00:00<?, ?it/s] Applying LoRA: 89%|████████▉ | 270/304 [00:00<00:00, 2674.82it/s] Applying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2606.04it/s] 2025-01-28 01:47:08.649 | SUCCESS | fp8.lora_loading:unload_loras:564 - LoRAs unloaded in 0.12s free=28996837507072 Downloading weights 2025-01-28T01:47:08Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpkqjpahhz/weights url=https://replicate.delivery/xezq/nENtU0FT0XI8P5x2bRj3qRQQsMbM2kWgct4oGbvB49UjXXCF/trained_model.tar 2025-01-28T01:47:11Z | INFO | [ Complete ] dest=/tmp/tmpkqjpahhz/weights size="215 MB" total_elapsed=2.556s url=https://replicate.delivery/xezq/nENtU0FT0XI8P5x2bRj3qRQQsMbM2kWgct4oGbvB49UjXXCF/trained_model.tar Downloaded weights in 2.58s 2025-01-28 01:47:11.233 | INFO | fp8.lora_loading:convert_lora_weights:498 - Loading LoRA weights for /src/weights-cache/7a19394bea9acc6e 2025-01-28 01:47:11.314 | INFO | fp8.lora_loading:convert_lora_weights:519 - LoRA weights loaded 2025-01-28 01:47:11.315 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys 2025-01-28 01:47:11.315 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted Applying LoRA: 0%| | 0/304 [00:00<?, ?it/s] Applying LoRA: 92%|█████████▏| 281/304 [00:00<00:00, 2803.59it/s] Applying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2752.52it/s] 2025-01-28 01:47:11.426 | SUCCESS | fp8.lora_loading:load_lora:539 - LoRA applied in 0.19s Using seed: 3892 0it [00:00, ?it/s] 1it [00:00, 8.36it/s] 2it [00:00, 5.86it/s] 3it [00:00, 5.34it/s] 4it [00:00, 5.12it/s] 5it [00:00, 4.99it/s] 6it [00:01, 4.91it/s] 7it [00:01, 4.88it/s] 8it [00:01, 4.85it/s] 9it [00:01, 4.84it/s] 10it [00:01, 4.82it/s] 11it [00:02, 4.81it/s] 12it [00:02, 4.81it/s] 13it [00:02, 4.81it/s] 14it [00:02, 4.82it/s] 15it [00:03, 4.81it/s] 16it [00:03, 4.81it/s] 17it [00:03, 4.80it/s] 18it [00:03, 4.80it/s] 19it [00:03, 4.81it/s] 20it [00:04, 4.81it/s] 21it [00:04, 4.80it/s] 22it [00:04, 4.79it/s] 23it [00:04, 4.79it/s] 24it [00:04, 4.79it/s] 25it [00:05, 4.79it/s] 26it [00:05, 4.80it/s] 27it [00:05, 4.79it/s] 28it [00:05, 4.80it/s] 28it [00:05, 4.88it/s] 0it [00:00, ?it/s] 1it [00:00, 4.85it/s] 2it [00:00, 4.82it/s] 3it [00:00, 4.81it/s] 4it [00:00, 4.80it/s] 5it [00:01, 4.79it/s] 6it [00:01, 4.79it/s] 7it [00:01, 4.78it/s] 8it [00:01, 4.78it/s] 9it [00:01, 4.78it/s] 10it [00:02, 4.78it/s] 11it [00:02, 4.78it/s] 12it [00:02, 4.77it/s] 13it [00:02, 4.77it/s] 14it [00:02, 4.76it/s] 15it [00:03, 4.77it/s] 16it [00:03, 4.77it/s] 17it [00:03, 4.76it/s] 18it [00:03, 4.76it/s] 19it [00:03, 4.76it/s] 20it [00:04, 4.77it/s] 21it [00:04, 4.79it/s] 22it [00:04, 4.78it/s] 23it [00:04, 4.77it/s] 24it [00:05, 4.78it/s] 25it [00:05, 4.77it/s] 26it [00:05, 4.77it/s] 27it [00:05, 4.78it/s] 28it [00:05, 4.79it/s] 28it [00:05, 4.78it/s] 0it [00:00, ?it/s] 1it [00:00, 4.82it/s] 2it [00:00, 4.79it/s] 3it [00:00, 4.78it/s] 4it [00:00, 4.78it/s] 5it [00:01, 4.79it/s] 6it [00:01, 4.79it/s] 7it [00:01, 4.79it/s] 8it [00:01, 4.79it/s] 9it [00:01, 4.79it/s] 10it [00:02, 4.79it/s] 11it [00:02, 4.79it/s] 12it [00:02, 4.79it/s] 13it [00:02, 4.79it/s] 14it [00:02, 4.80it/s] 15it [00:03, 4.79it/s] 16it [00:03, 4.79it/s] 17it [00:03, 4.78it/s] 18it [00:03, 4.78it/s] 19it [00:03, 4.78it/s] 20it [00:04, 4.78it/s] 21it [00:04, 4.78it/s] 22it [00:04, 4.79it/s] 23it [00:04, 4.79it/s] 24it [00:05, 4.79it/s] 25it [00:05, 4.78it/s] 26it [00:05, 4.78it/s] 27it [00:05, 4.78it/s] 28it [00:05, 4.77it/s] 28it [00:05, 4.79it/s] 0it [00:00, ?it/s] 1it [00:00, 4.83it/s] 2it [00:00, 4.81it/s] 3it [00:00, 4.81it/s] 4it [00:00, 4.81it/s] 5it [00:01, 4.81it/s] 6it [00:01, 4.79it/s] 7it [00:01, 4.79it/s] 8it [00:01, 4.78it/s] 9it [00:01, 4.79it/s] 10it [00:02, 4.79it/s] 11it [00:02, 4.79it/s] 12it [00:02, 4.79it/s] 13it [00:02, 4.78it/s] 14it [00:02, 4.77it/s] 15it [00:03, 4.77it/s] 16it [00:03, 4.78it/s] 17it [00:03, 4.78it/s] 18it [00:03, 4.78it/s] 19it [00:03, 4.78it/s] 20it [00:04, 4.78it/s] 21it [00:04, 4.78it/s] 22it [00:04, 4.78it/s] 23it [00:04, 4.78it/s] 24it [00:05, 4.78it/s] 25it [00:05, 4.77it/s] 26it [00:05, 4.78it/s] 27it [00:05, 4.79it/s] 28it [00:05, 4.79it/s] 28it [00:05, 4.79it/s] Total safe images: 4 out of 4
Prediction
lastmover/purr2:19e5239358c8ecbc81acad82cd146ba16b5c6f4b52375cd170db578ece68b0f5IDjce3ybg7f1rme0cmnafv16ag94StatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- a digital illustration of PURR standing in baseball field
- go_fast
- lora_scale
- 1
- megapixels
- 1
- num_outputs
- 4
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3
- output_quality
- 80
- prompt_strength
- 1
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "a digital illustration of PURR standing in baseball field", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 1, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run lastmover/purr2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "lastmover/purr2:19e5239358c8ecbc81acad82cd146ba16b5c6f4b52375cd170db578ece68b0f5", { input: { model: "dev", prompt: "a digital illustration of PURR standing in baseball field", go_fast: false, lora_scale: 1, megapixels: "1", num_outputs: 4, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3, output_quality: 80, prompt_strength: 1, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run lastmover/purr2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "lastmover/purr2:19e5239358c8ecbc81acad82cd146ba16b5c6f4b52375cd170db578ece68b0f5", input={ "model": "dev", "prompt": "a digital illustration of PURR standing in baseball field", "go_fast": False, "lora_scale": 1, "megapixels": "1", "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 1, "extra_lora_scale": 1, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run lastmover/purr2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "19e5239358c8ecbc81acad82cd146ba16b5c6f4b52375cd170db578ece68b0f5", "input": { "model": "dev", "prompt": "a digital illustration of PURR standing in baseball field", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 1, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2025-01-28T01:56:00.983926Z", "created_at": "2025-01-28T01:55:36.440000Z", "data_removed": false, "error": null, "id": "jce3ybg7f1rme0cmnafv16ag94", "input": { "model": "dev", "prompt": "a digital illustration of PURR standing in baseball field", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 1, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "2025-01-28 01:55:36.502 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys\n2025-01-28 01:55:36.503 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted\nApplying LoRA: 0%| | 0/304 [00:00<?, ?it/s]\nApplying LoRA: 92%|█████████▏| 279/304 [00:00<00:00, 2760.23it/s]\nApplying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2619.44it/s]\n2025-01-28 01:55:36.619 | SUCCESS | fp8.lora_loading:unload_loras:564 - LoRAs unloaded in 0.12s\n2025-01-28 01:55:36.620 | INFO | fp8.lora_loading:convert_lora_weights:498 - Loading LoRA weights for /src/weights-cache/7a19394bea9acc6e\n2025-01-28 01:55:36.738 | INFO | fp8.lora_loading:convert_lora_weights:519 - LoRA weights loaded\n2025-01-28 01:55:36.738 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys\n2025-01-28 01:55:36.739 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted\nApplying LoRA: 0%| | 0/304 [00:00<?, ?it/s]\nApplying LoRA: 95%|█████████▌| 290/304 [00:00<00:00, 2891.92it/s]\nApplying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2768.40it/s]\n2025-01-28 01:55:36.849 | SUCCESS | fp8.lora_loading:load_lora:539 - LoRA applied in 0.23s\nUsing seed: 4880\n0it [00:00, ?it/s]\n1it [00:00, 8.35it/s]\n2it [00:00, 5.85it/s]\n3it [00:00, 5.33it/s]\n4it [00:00, 5.13it/s]\n5it [00:00, 5.02it/s]\n6it [00:01, 4.94it/s]\n7it [00:01, 4.89it/s]\n8it [00:01, 4.87it/s]\n9it [00:01, 4.85it/s]\n10it [00:01, 4.83it/s]\n11it [00:02, 4.82it/s]\n12it [00:02, 4.81it/s]\n13it [00:02, 4.81it/s]\n14it [00:02, 4.80it/s]\n15it [00:03, 4.80it/s]\n16it [00:03, 4.80it/s]\n17it [00:03, 4.80it/s]\n18it [00:03, 4.81it/s]\n19it [00:03, 4.81it/s]\n20it [00:04, 4.81it/s]\n21it [00:04, 4.81it/s]\n22it [00:04, 4.80it/s]\n23it [00:04, 4.80it/s]\n24it [00:04, 4.80it/s]\n25it [00:05, 4.80it/s]\n26it [00:05, 4.80it/s]\n27it [00:05, 4.80it/s]\n28it [00:05, 4.80it/s]\n28it [00:05, 4.88it/s]\n0it [00:00, ?it/s]\n1it [00:00, 4.83it/s]\n2it [00:00, 4.80it/s]\n3it [00:00, 4.80it/s]\n4it [00:00, 4.79it/s]\n5it [00:01, 4.80it/s]\n6it [00:01, 4.79it/s]\n7it [00:01, 4.79it/s]\n8it [00:01, 4.78it/s]\n9it [00:01, 4.78it/s]\n10it [00:02, 4.79it/s]\n11it [00:02, 4.79it/s]\n12it [00:02, 4.79it/s]\n13it [00:02, 4.79it/s]\n14it [00:02, 4.78it/s]\n15it [00:03, 4.78it/s]\n16it [00:03, 4.79it/s]\n17it [00:03, 4.78it/s]\n18it [00:03, 4.78it/s]\n19it [00:03, 4.79it/s]\n20it [00:04, 4.79it/s]\n21it [00:04, 4.79it/s]\n22it [00:04, 4.79it/s]\n23it [00:04, 4.80it/s]\n24it [00:05, 4.80it/s]\n25it [00:05, 4.80it/s]\n26it [00:05, 4.79it/s]\n27it [00:05, 4.79it/s]\n28it [00:05, 4.79it/s]\n28it [00:05, 4.79it/s]\n0it [00:00, ?it/s]\n1it [00:00, 4.82it/s]\n2it [00:00, 4.79it/s]\n3it [00:00, 4.78it/s]\n4it [00:00, 4.77it/s]\n5it [00:01, 4.77it/s]\n6it [00:01, 4.78it/s]\n7it [00:01, 4.77it/s]\n8it [00:01, 4.77it/s]\n9it [00:01, 4.77it/s]\n10it [00:02, 4.77it/s]\n11it [00:02, 4.77it/s]\n12it [00:02, 4.77it/s]\n13it [00:02, 4.77it/s]\n14it [00:02, 4.78it/s]\n15it [00:03, 4.79it/s]\n16it [00:03, 4.78it/s]\n17it [00:03, 4.78it/s]\n18it [00:03, 4.78it/s]\n19it [00:03, 4.78it/s]\n20it [00:04, 4.79it/s]\n21it [00:04, 4.78it/s]\n22it [00:04, 4.78it/s]\n23it [00:04, 4.78it/s]\n24it [00:05, 4.77it/s]\n25it [00:05, 4.78it/s]\n26it [00:05, 4.78it/s]\n27it [00:05, 4.78it/s]\n28it [00:05, 4.78it/s]\n28it [00:05, 4.78it/s]\n0it [00:00, ?it/s]\n1it [00:00, 4.82it/s]\n2it [00:00, 4.79it/s]\n3it [00:00, 4.78it/s]\n4it [00:00, 4.77it/s]\n5it [00:01, 4.78it/s]\n6it [00:01, 4.78it/s]\n7it [00:01, 4.77it/s]\n8it [00:01, 4.78it/s]\n9it [00:01, 4.77it/s]\n10it [00:02, 4.77it/s]\n11it [00:02, 4.77it/s]\n12it [00:02, 4.77it/s]\n13it [00:02, 4.77it/s]\n14it [00:02, 4.76it/s]\n15it [00:03, 4.76it/s]\n16it [00:03, 4.76it/s]\n17it [00:03, 4.77it/s]\n18it [00:03, 4.77it/s]\n19it [00:03, 4.77it/s]\n20it [00:04, 4.77it/s]\n21it [00:04, 4.77it/s]\n22it [00:04, 4.77it/s]\n23it [00:04, 4.77it/s]\n24it [00:05, 4.76it/s]\n25it [00:05, 4.76it/s]\n26it [00:05, 4.76it/s]\n27it [00:05, 4.76it/s]\n28it [00:05, 4.76it/s]\n28it [00:05, 4.77it/s]\nTotal safe images: 4 out of 4", "metrics": { "predict_time": 24.479581682, "total_time": 24.543926 }, "output": [ "https://replicate.delivery/xezq/baNePwRyuz1vNCp1deiwRAe34d5OFlpzCRYqKcAGoFWhZ9SoA/out-0.webp", "https://replicate.delivery/xezq/QNYSnIfVyG2LWiF1DhkGT2aeEU4D6jiO9bKoocXw2e5hZ9SoA/out-1.webp", "https://replicate.delivery/xezq/ft3C4gW3yCUxOSYSVYP64JOdek2FSLbndkK2J70ACsZwseSoA/out-2.webp", "https://replicate.delivery/xezq/56frktCdDeiMDkhWrAWihh1xBSPteUHXrnIQThAUilwgZ9SoA/out-3.webp" ], "started_at": "2025-01-28T01:55:36.504344Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/bsvm-emrx6wr2ceqzln6bqkpmar2j7fnzgevnp3yftjvnikxhsl57j5sa", "get": "https://api.replicate.com/v1/predictions/jce3ybg7f1rme0cmnafv16ag94", "cancel": "https://api.replicate.com/v1/predictions/jce3ybg7f1rme0cmnafv16ag94/cancel" }, "version": "19e5239358c8ecbc81acad82cd146ba16b5c6f4b52375cd170db578ece68b0f5" }
Generated in2025-01-28 01:55:36.502 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys 2025-01-28 01:55:36.503 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted Applying LoRA: 0%| | 0/304 [00:00<?, ?it/s] Applying LoRA: 92%|█████████▏| 279/304 [00:00<00:00, 2760.23it/s] Applying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2619.44it/s] 2025-01-28 01:55:36.619 | SUCCESS | fp8.lora_loading:unload_loras:564 - LoRAs unloaded in 0.12s 2025-01-28 01:55:36.620 | INFO | fp8.lora_loading:convert_lora_weights:498 - Loading LoRA weights for /src/weights-cache/7a19394bea9acc6e 2025-01-28 01:55:36.738 | INFO | fp8.lora_loading:convert_lora_weights:519 - LoRA weights loaded 2025-01-28 01:55:36.738 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys 2025-01-28 01:55:36.739 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted Applying LoRA: 0%| | 0/304 [00:00<?, ?it/s] Applying LoRA: 95%|█████████▌| 290/304 [00:00<00:00, 2891.92it/s] Applying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2768.40it/s] 2025-01-28 01:55:36.849 | SUCCESS | fp8.lora_loading:load_lora:539 - LoRA applied in 0.23s Using seed: 4880 0it [00:00, ?it/s] 1it [00:00, 8.35it/s] 2it [00:00, 5.85it/s] 3it [00:00, 5.33it/s] 4it [00:00, 5.13it/s] 5it [00:00, 5.02it/s] 6it [00:01, 4.94it/s] 7it [00:01, 4.89it/s] 8it [00:01, 4.87it/s] 9it [00:01, 4.85it/s] 10it [00:01, 4.83it/s] 11it [00:02, 4.82it/s] 12it [00:02, 4.81it/s] 13it [00:02, 4.81it/s] 14it [00:02, 4.80it/s] 15it [00:03, 4.80it/s] 16it [00:03, 4.80it/s] 17it [00:03, 4.80it/s] 18it [00:03, 4.81it/s] 19it [00:03, 4.81it/s] 20it [00:04, 4.81it/s] 21it [00:04, 4.81it/s] 22it [00:04, 4.80it/s] 23it [00:04, 4.80it/s] 24it [00:04, 4.80it/s] 25it [00:05, 4.80it/s] 26it [00:05, 4.80it/s] 27it [00:05, 4.80it/s] 28it [00:05, 4.80it/s] 28it [00:05, 4.88it/s] 0it [00:00, ?it/s] 1it [00:00, 4.83it/s] 2it [00:00, 4.80it/s] 3it [00:00, 4.80it/s] 4it [00:00, 4.79it/s] 5it [00:01, 4.80it/s] 6it [00:01, 4.79it/s] 7it [00:01, 4.79it/s] 8it [00:01, 4.78it/s] 9it [00:01, 4.78it/s] 10it [00:02, 4.79it/s] 11it [00:02, 4.79it/s] 12it [00:02, 4.79it/s] 13it [00:02, 4.79it/s] 14it [00:02, 4.78it/s] 15it [00:03, 4.78it/s] 16it [00:03, 4.79it/s] 17it [00:03, 4.78it/s] 18it [00:03, 4.78it/s] 19it [00:03, 4.79it/s] 20it [00:04, 4.79it/s] 21it [00:04, 4.79it/s] 22it [00:04, 4.79it/s] 23it [00:04, 4.80it/s] 24it [00:05, 4.80it/s] 25it [00:05, 4.80it/s] 26it [00:05, 4.79it/s] 27it [00:05, 4.79it/s] 28it [00:05, 4.79it/s] 28it [00:05, 4.79it/s] 0it [00:00, ?it/s] 1it [00:00, 4.82it/s] 2it [00:00, 4.79it/s] 3it [00:00, 4.78it/s] 4it [00:00, 4.77it/s] 5it [00:01, 4.77it/s] 6it [00:01, 4.78it/s] 7it [00:01, 4.77it/s] 8it [00:01, 4.77it/s] 9it [00:01, 4.77it/s] 10it [00:02, 4.77it/s] 11it [00:02, 4.77it/s] 12it [00:02, 4.77it/s] 13it [00:02, 4.77it/s] 14it [00:02, 4.78it/s] 15it [00:03, 4.79it/s] 16it [00:03, 4.78it/s] 17it [00:03, 4.78it/s] 18it [00:03, 4.78it/s] 19it [00:03, 4.78it/s] 20it [00:04, 4.79it/s] 21it [00:04, 4.78it/s] 22it [00:04, 4.78it/s] 23it [00:04, 4.78it/s] 24it [00:05, 4.77it/s] 25it [00:05, 4.78it/s] 26it [00:05, 4.78it/s] 27it [00:05, 4.78it/s] 28it [00:05, 4.78it/s] 28it [00:05, 4.78it/s] 0it [00:00, ?it/s] 1it [00:00, 4.82it/s] 2it [00:00, 4.79it/s] 3it [00:00, 4.78it/s] 4it [00:00, 4.77it/s] 5it [00:01, 4.78it/s] 6it [00:01, 4.78it/s] 7it [00:01, 4.77it/s] 8it [00:01, 4.78it/s] 9it [00:01, 4.77it/s] 10it [00:02, 4.77it/s] 11it [00:02, 4.77it/s] 12it [00:02, 4.77it/s] 13it [00:02, 4.77it/s] 14it [00:02, 4.76it/s] 15it [00:03, 4.76it/s] 16it [00:03, 4.76it/s] 17it [00:03, 4.77it/s] 18it [00:03, 4.77it/s] 19it [00:03, 4.77it/s] 20it [00:04, 4.77it/s] 21it [00:04, 4.77it/s] 22it [00:04, 4.77it/s] 23it [00:04, 4.77it/s] 24it [00:05, 4.76it/s] 25it [00:05, 4.76it/s] 26it [00:05, 4.76it/s] 27it [00:05, 4.76it/s] 28it [00:05, 4.76it/s] 28it [00:05, 4.77it/s] Total safe images: 4 out of 4
Prediction
lastmover/purr2:19e5239358c8ecbc81acad82cd146ba16b5c6f4b52375cd170db578ece68b0f5IDhg0c9wawahrme0cmnxjt13h3b4StatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- PURR as a kitten teacher with a oversized graduation cap, writing '$1 wen?' clumsily on the board, chalk dust everywhere, watercolor background with floating cat treats.
- go_fast
- lora_scale
- 1
- megapixels
- 1
- num_outputs
- 4
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3
- output_quality
- 80
- prompt_strength
- 1
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "PURR as a kitten teacher with a oversized graduation cap, writing '$1 wen?' clumsily on the board, chalk dust everywhere, watercolor background with floating cat treats.", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 1, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run lastmover/purr2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "lastmover/purr2:19e5239358c8ecbc81acad82cd146ba16b5c6f4b52375cd170db578ece68b0f5", { input: { model: "dev", prompt: "PURR as a kitten teacher with a oversized graduation cap, writing '$1 wen?' clumsily on the board, chalk dust everywhere, watercolor background with floating cat treats.", go_fast: false, lora_scale: 1, megapixels: "1", num_outputs: 4, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3, output_quality: 80, prompt_strength: 1, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run lastmover/purr2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "lastmover/purr2:19e5239358c8ecbc81acad82cd146ba16b5c6f4b52375cd170db578ece68b0f5", input={ "model": "dev", "prompt": "PURR as a kitten teacher with a oversized graduation cap, writing '$1 wen?' clumsily on the board, chalk dust everywhere, watercolor background with floating cat treats.", "go_fast": False, "lora_scale": 1, "megapixels": "1", "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 1, "extra_lora_scale": 1, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run lastmover/purr2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "19e5239358c8ecbc81acad82cd146ba16b5c6f4b52375cd170db578ece68b0f5", "input": { "model": "dev", "prompt": "PURR as a kitten teacher with a oversized graduation cap, writing \'$1 wen?\' clumsily on the board, chalk dust everywhere, watercolor background with floating cat treats.", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 1, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2025-01-29T00:11:08.878062Z", "created_at": "2025-01-29T00:10:43.156000Z", "data_removed": false, "error": null, "id": "hg0c9wawahrme0cmnxjt13h3b4", "input": { "model": "dev", "prompt": "PURR as a kitten teacher with a oversized graduation cap, writing '$1 wen?' clumsily on the board, chalk dust everywhere, watercolor background with floating cat treats.", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 1, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "2025-01-29 00:10:43.207 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys\n2025-01-29 00:10:43.207 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted\nApplying LoRA: 0%| | 0/304 [00:00<?, ?it/s]\nApplying LoRA: 91%|█████████ | 277/304 [00:00<00:00, 2761.77it/s]\nApplying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2678.32it/s]\n2025-01-29 00:10:43.321 | SUCCESS | fp8.lora_loading:unload_loras:564 - LoRAs unloaded in 0.11s\nfree=29091677683712\nDownloading weights\n2025-01-29T00:10:43Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpou5gzlc8/weights url=https://replicate.delivery/xezq/nENtU0FT0XI8P5x2bRj3qRQQsMbM2kWgct4oGbvB49UjXXCF/trained_model.tar\n2025-01-29T00:10:44Z | INFO | [ Complete ] dest=/tmp/tmpou5gzlc8/weights size=\"215 MB\" total_elapsed=1.231s url=https://replicate.delivery/xezq/nENtU0FT0XI8P5x2bRj3qRQQsMbM2kWgct4oGbvB49UjXXCF/trained_model.tar\nDownloaded weights in 1.25s\n2025-01-29 00:10:44.576 | INFO | fp8.lora_loading:convert_lora_weights:498 - Loading LoRA weights for /src/weights-cache/7a19394bea9acc6e\n2025-01-29 00:10:44.657 | INFO | fp8.lora_loading:convert_lora_weights:519 - LoRA weights loaded\n2025-01-29 00:10:44.657 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys\n2025-01-29 00:10:44.657 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted\nApplying LoRA: 0%| | 0/304 [00:00<?, ?it/s]\nApplying LoRA: 97%|█████████▋| 294/304 [00:00<00:00, 2924.16it/s]\nApplying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2853.51it/s]\n2025-01-29 00:10:44.764 | SUCCESS | fp8.lora_loading:load_lora:539 - LoRA applied in 0.19s\nUsing seed: 33562\n0it [00:00, ?it/s]\n1it [00:00, 8.31it/s]\n2it [00:00, 5.83it/s]\n3it [00:00, 5.33it/s]\n4it [00:00, 5.11it/s]\n5it [00:00, 4.99it/s]\n6it [00:01, 4.91it/s]\n7it [00:01, 4.87it/s]\n8it [00:01, 4.86it/s]\n9it [00:01, 4.85it/s]\n10it [00:01, 4.83it/s]\n11it [00:02, 4.81it/s]\n12it [00:02, 4.80it/s]\n13it [00:02, 4.80it/s]\n14it [00:02, 4.80it/s]\n15it [00:03, 4.81it/s]\n16it [00:03, 4.81it/s]\n17it [00:03, 4.81it/s]\n18it [00:03, 4.80it/s]\n19it [00:03, 4.79it/s]\n20it [00:04, 4.79it/s]\n21it [00:04, 4.78it/s]\n22it [00:04, 4.79it/s]\n23it [00:04, 4.79it/s]\n24it [00:04, 4.81it/s]\n25it [00:05, 4.80it/s]\n26it [00:05, 4.80it/s]\n27it [00:05, 4.80it/s]\n28it [00:05, 4.80it/s]\n28it [00:05, 4.87it/s]\n0it [00:00, ?it/s]\n1it [00:00, 4.84it/s]\n2it [00:00, 4.81it/s]\n3it [00:00, 4.80it/s]\n4it [00:00, 4.80it/s]\n5it [00:01, 4.80it/s]\n6it [00:01, 4.81it/s]\n7it [00:01, 4.81it/s]\n8it [00:01, 4.81it/s]\n9it [00:01, 4.80it/s]\n10it [00:02, 4.79it/s]\n11it [00:02, 4.80it/s]\n12it [00:02, 4.80it/s]\n13it [00:02, 4.80it/s]\n14it [00:02, 4.80it/s]\n15it [00:03, 4.79it/s]\n16it [00:03, 4.79it/s]\n17it [00:03, 4.80it/s]\n18it [00:03, 4.79it/s]\n19it [00:03, 4.79it/s]\n20it [00:04, 4.80it/s]\n21it [00:04, 4.79it/s]\n22it [00:04, 4.79it/s]\n23it [00:04, 4.80it/s]\n24it [00:05, 4.80it/s]\n25it [00:05, 4.79it/s]\n26it [00:05, 4.80it/s]\n27it [00:05, 4.79it/s]\n28it [00:05, 4.80it/s]\n28it [00:05, 4.80it/s]\n0it [00:00, ?it/s]\n1it [00:00, 4.85it/s]\n2it [00:00, 4.82it/s]\n3it [00:00, 4.80it/s]\n4it [00:00, 4.79it/s]\n5it [00:01, 4.79it/s]\n6it [00:01, 4.80it/s]\n7it [00:01, 4.80it/s]\n8it [00:01, 4.79it/s]\n9it [00:01, 4.79it/s]\n10it [00:02, 4.80it/s]\n11it [00:02, 4.80it/s]\n12it [00:02, 4.80it/s]\n13it [00:02, 4.79it/s]\n14it [00:02, 4.79it/s]\n15it [00:03, 4.79it/s]\n16it [00:03, 4.80it/s]\n17it [00:03, 4.79it/s]\n18it [00:03, 4.79it/s]\n19it [00:03, 4.78it/s]\n20it [00:04, 4.79it/s]\n21it [00:04, 4.80it/s]\n22it [00:04, 4.79it/s]\n23it [00:04, 4.80it/s]\n24it [00:05, 4.80it/s]\n25it [00:05, 4.79it/s]\n26it [00:05, 4.79it/s]\n27it [00:05, 4.79it/s]\n28it [00:05, 4.79it/s]\n28it [00:05, 4.79it/s]\n0it [00:00, ?it/s]\n1it [00:00, 4.85it/s]\n2it [00:00, 4.82it/s]\n3it [00:00, 4.80it/s]\n4it [00:00, 4.80it/s]\n5it [00:01, 4.79it/s]\n6it [00:01, 4.80it/s]\n7it [00:01, 4.80it/s]\n8it [00:01, 4.79it/s]\n9it [00:01, 4.79it/s]\n10it [00:02, 4.78it/s]\n11it [00:02, 4.78it/s]\n12it [00:02, 4.78it/s]\n13it [00:02, 4.78it/s]\n14it [00:02, 4.78it/s]\n15it [00:03, 4.78it/s]\n16it [00:03, 4.78it/s]\n17it [00:03, 4.78it/s]\n18it [00:03, 4.78it/s]\n19it [00:03, 4.79it/s]\n20it [00:04, 4.79it/s]\n21it [00:04, 4.78it/s]\n22it [00:04, 4.79it/s]\n23it [00:04, 4.80it/s]\n24it [00:05, 4.80it/s]\n25it [00:05, 4.80it/s]\n26it [00:05, 4.79it/s]\n27it [00:05, 4.80it/s]\n28it [00:05, 4.79it/s]\n28it [00:05, 4.79it/s]\nTotal safe images: 4 out of 4", "metrics": { "predict_time": 25.670033354, "total_time": 25.722062 }, "output": [ "https://replicate.delivery/xezq/FbG7Mxbz1ZaiBdCd2oNw6hA1rAuoaMfsdxfR3Rd5mWmcQyJUA/out-0.webp", "https://replicate.delivery/xezq/7c67sc5ENJ6YDZGb4ZSGXrCx0FYU6TlX1m7ID0DxpQPHkcCF/out-1.webp", "https://replicate.delivery/xezq/aB8zwm1bGbKuOBxVtrRhSI9ps9OPYbQgGQujrhPnu9MHkcCF/out-2.webp", "https://replicate.delivery/xezq/HLHzz3tsYo4QAtjJczTpvzMk5K2a7N7ttUZdS2urvTKHkcCF/out-3.webp" ], "started_at": "2025-01-29T00:10:43.208029Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/bsvm-asqs5eef5dm5wyye53bzsjhfukomglm7eau7djeccvgxjhhyy5oq", "get": "https://api.replicate.com/v1/predictions/hg0c9wawahrme0cmnxjt13h3b4", "cancel": "https://api.replicate.com/v1/predictions/hg0c9wawahrme0cmnxjt13h3b4/cancel" }, "version": "19e5239358c8ecbc81acad82cd146ba16b5c6f4b52375cd170db578ece68b0f5" }
Generated in2025-01-29 00:10:43.207 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys 2025-01-29 00:10:43.207 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted Applying LoRA: 0%| | 0/304 [00:00<?, ?it/s] Applying LoRA: 91%|█████████ | 277/304 [00:00<00:00, 2761.77it/s] Applying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2678.32it/s] 2025-01-29 00:10:43.321 | SUCCESS | fp8.lora_loading:unload_loras:564 - LoRAs unloaded in 0.11s free=29091677683712 Downloading weights 2025-01-29T00:10:43Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpou5gzlc8/weights url=https://replicate.delivery/xezq/nENtU0FT0XI8P5x2bRj3qRQQsMbM2kWgct4oGbvB49UjXXCF/trained_model.tar 2025-01-29T00:10:44Z | INFO | [ Complete ] dest=/tmp/tmpou5gzlc8/weights size="215 MB" total_elapsed=1.231s url=https://replicate.delivery/xezq/nENtU0FT0XI8P5x2bRj3qRQQsMbM2kWgct4oGbvB49UjXXCF/trained_model.tar Downloaded weights in 1.25s 2025-01-29 00:10:44.576 | INFO | fp8.lora_loading:convert_lora_weights:498 - Loading LoRA weights for /src/weights-cache/7a19394bea9acc6e 2025-01-29 00:10:44.657 | INFO | fp8.lora_loading:convert_lora_weights:519 - LoRA weights loaded 2025-01-29 00:10:44.657 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys 2025-01-29 00:10:44.657 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted Applying LoRA: 0%| | 0/304 [00:00<?, ?it/s] Applying LoRA: 97%|█████████▋| 294/304 [00:00<00:00, 2924.16it/s] Applying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2853.51it/s] 2025-01-29 00:10:44.764 | SUCCESS | fp8.lora_loading:load_lora:539 - LoRA applied in 0.19s Using seed: 33562 0it [00:00, ?it/s] 1it [00:00, 8.31it/s] 2it [00:00, 5.83it/s] 3it [00:00, 5.33it/s] 4it [00:00, 5.11it/s] 5it [00:00, 4.99it/s] 6it [00:01, 4.91it/s] 7it [00:01, 4.87it/s] 8it [00:01, 4.86it/s] 9it [00:01, 4.85it/s] 10it [00:01, 4.83it/s] 11it [00:02, 4.81it/s] 12it [00:02, 4.80it/s] 13it [00:02, 4.80it/s] 14it [00:02, 4.80it/s] 15it [00:03, 4.81it/s] 16it [00:03, 4.81it/s] 17it [00:03, 4.81it/s] 18it [00:03, 4.80it/s] 19it [00:03, 4.79it/s] 20it [00:04, 4.79it/s] 21it [00:04, 4.78it/s] 22it [00:04, 4.79it/s] 23it [00:04, 4.79it/s] 24it [00:04, 4.81it/s] 25it [00:05, 4.80it/s] 26it [00:05, 4.80it/s] 27it [00:05, 4.80it/s] 28it [00:05, 4.80it/s] 28it [00:05, 4.87it/s] 0it [00:00, ?it/s] 1it [00:00, 4.84it/s] 2it [00:00, 4.81it/s] 3it [00:00, 4.80it/s] 4it [00:00, 4.80it/s] 5it [00:01, 4.80it/s] 6it [00:01, 4.81it/s] 7it [00:01, 4.81it/s] 8it [00:01, 4.81it/s] 9it [00:01, 4.80it/s] 10it [00:02, 4.79it/s] 11it [00:02, 4.80it/s] 12it [00:02, 4.80it/s] 13it [00:02, 4.80it/s] 14it [00:02, 4.80it/s] 15it [00:03, 4.79it/s] 16it [00:03, 4.79it/s] 17it [00:03, 4.80it/s] 18it [00:03, 4.79it/s] 19it [00:03, 4.79it/s] 20it [00:04, 4.80it/s] 21it [00:04, 4.79it/s] 22it [00:04, 4.79it/s] 23it [00:04, 4.80it/s] 24it [00:05, 4.80it/s] 25it [00:05, 4.79it/s] 26it [00:05, 4.80it/s] 27it [00:05, 4.79it/s] 28it [00:05, 4.80it/s] 28it [00:05, 4.80it/s] 0it [00:00, ?it/s] 1it [00:00, 4.85it/s] 2it [00:00, 4.82it/s] 3it [00:00, 4.80it/s] 4it [00:00, 4.79it/s] 5it [00:01, 4.79it/s] 6it [00:01, 4.80it/s] 7it [00:01, 4.80it/s] 8it [00:01, 4.79it/s] 9it [00:01, 4.79it/s] 10it [00:02, 4.80it/s] 11it [00:02, 4.80it/s] 12it [00:02, 4.80it/s] 13it [00:02, 4.79it/s] 14it [00:02, 4.79it/s] 15it [00:03, 4.79it/s] 16it [00:03, 4.80it/s] 17it [00:03, 4.79it/s] 18it [00:03, 4.79it/s] 19it [00:03, 4.78it/s] 20it [00:04, 4.79it/s] 21it [00:04, 4.80it/s] 22it [00:04, 4.79it/s] 23it [00:04, 4.80it/s] 24it [00:05, 4.80it/s] 25it [00:05, 4.79it/s] 26it [00:05, 4.79it/s] 27it [00:05, 4.79it/s] 28it [00:05, 4.79it/s] 28it [00:05, 4.79it/s] 0it [00:00, ?it/s] 1it [00:00, 4.85it/s] 2it [00:00, 4.82it/s] 3it [00:00, 4.80it/s] 4it [00:00, 4.80it/s] 5it [00:01, 4.79it/s] 6it [00:01, 4.80it/s] 7it [00:01, 4.80it/s] 8it [00:01, 4.79it/s] 9it [00:01, 4.79it/s] 10it [00:02, 4.78it/s] 11it [00:02, 4.78it/s] 12it [00:02, 4.78it/s] 13it [00:02, 4.78it/s] 14it [00:02, 4.78it/s] 15it [00:03, 4.78it/s] 16it [00:03, 4.78it/s] 17it [00:03, 4.78it/s] 18it [00:03, 4.78it/s] 19it [00:03, 4.79it/s] 20it [00:04, 4.79it/s] 21it [00:04, 4.78it/s] 22it [00:04, 4.79it/s] 23it [00:04, 4.80it/s] 24it [00:05, 4.80it/s] 25it [00:05, 4.80it/s] 26it [00:05, 4.79it/s] 27it [00:05, 4.80it/s] 28it [00:05, 4.79it/s] 28it [00:05, 4.79it/s] Total safe images: 4 out of 4
Want to make some of these yourself?
Run this model