leandroamaral
/
segany2
- Public
- 2 runs
Run leandroamaral/segany2 with an API
Use one of our client libraries to get started quickly. Clicking on a library will take you to the Playground tab where you can tweak different inputs, see the results, and copy the corresponding code to use in your own project.
Input schema
The fields you can use to run this model with an API. If you don't give a value for a field its default value will be used.
Field | Type | Default value | Description |
---|---|---|---|
image |
string
|
Input image
|
|
model_name |
string
(enum)
|
FastSAM-x
Options: FastSAM-x, FastSAM-s |
choose a model
|
iou |
number
|
0.7
|
iou threshold for filtering the annotations
|
text_prompt |
string
|
use text prompt eg: "a black dog"
|
|
conf |
number
|
0.25
|
object confidence threshold
|
retina |
boolean
|
True
|
draw high-resolution segmentation masks
|
box_prompt |
string
|
[0,0,0,0]
|
[x,y,w,h]
|
point_prompt |
string
|
[[0,0]]
|
[[x1,y1],[x2,y2]]
|
point_label |
string
|
[0]
|
[1,0] 0:background, 1:foreground
|
withContours |
boolean
|
False
|
draw the edges of the masks
|
better_quality |
boolean
|
False
|
better quality using morphologyEx
|
{
"type": "object",
"title": "Input",
"required": [
"image"
],
"properties": {
"iou": {
"type": "number",
"title": "Iou",
"default": 0.7,
"x-order": 2,
"description": "iou threshold for filtering the annotations"
},
"conf": {
"type": "number",
"title": "Conf",
"default": 0.25,
"x-order": 4,
"description": "object confidence threshold"
},
"image": {
"type": "string",
"title": "Image",
"format": "uri",
"x-order": 0,
"description": "Input image"
},
"retina": {
"type": "boolean",
"title": "Retina",
"default": true,
"x-order": 5,
"description": "draw high-resolution segmentation masks"
},
"box_prompt": {
"type": "string",
"title": "Box Prompt",
"default": "[0,0,0,0]",
"x-order": 6,
"description": "[x,y,w,h]"
},
"model_name": {
"enum": [
"FastSAM-x",
"FastSAM-s"
],
"type": "string",
"title": "model_name",
"description": "choose a model",
"default": "FastSAM-x",
"x-order": 1
},
"point_label": {
"type": "string",
"title": "Point Label",
"default": "[0]",
"x-order": 8,
"description": "[1,0] 0:background, 1:foreground"
},
"text_prompt": {
"type": "string",
"title": "Text Prompt",
"x-order": 3,
"description": "use text prompt eg: \"a black dog\""
},
"point_prompt": {
"type": "string",
"title": "Point Prompt",
"default": "[[0,0]]",
"x-order": 7,
"description": "[[x1,y1],[x2,y2]]"
},
"withContours": {
"type": "boolean",
"title": "Withcontours",
"default": false,
"x-order": 9,
"description": "draw the edges of the masks"
},
"better_quality": {
"type": "boolean",
"title": "Better Quality",
"default": false,
"x-order": 10,
"description": "better quality using morphologyEx"
}
}
}
Output schema
The shape of the response you’ll get when you run this model with an API.
Schema
{
"type": "string",
"title": "Output",
"format": "uri"
}