levelsio / san-andreas
Take pics in the style of GTA: San Andreas, Vice City and GTA III
- Public
- 8.3K runs
-
H100
Prediction
levelsio/san-andreas:48ec7052507119a3d8e4ab31299faf1246275e39d4727ab3542c6a38e22ae839IDg579vqhce1rm40chxf18m3y1y0StatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- Amsterdam, the Netherlands in the style of STL
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 16:9
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "Amsterdam, the Netherlands in the style of STL", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "16:9", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run levelsio/san-andreas using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "levelsio/san-andreas:48ec7052507119a3d8e4ab31299faf1246275e39d4727ab3542c6a38e22ae839", { input: { model: "dev", prompt: "Amsterdam, the Netherlands in the style of STL", lora_scale: 1, num_outputs: 1, aspect_ratio: "16:9", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run levelsio/san-andreas using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "levelsio/san-andreas:48ec7052507119a3d8e4ab31299faf1246275e39d4727ab3542c6a38e22ae839", input={ "model": "dev", "prompt": "Amsterdam, the Netherlands in the style of STL", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "16:9", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run levelsio/san-andreas using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "levelsio/san-andreas:48ec7052507119a3d8e4ab31299faf1246275e39d4727ab3542c6a38e22ae839", "input": { "model": "dev", "prompt": "Amsterdam, the Netherlands in the style of STL", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "16:9", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-13T14:21:23.270184Z", "created_at": "2024-09-13T14:20:56.816000Z", "data_removed": false, "error": null, "id": "g579vqhce1rm40chxf18m3y1y0", "input": { "model": "dev", "prompt": "Amsterdam, the Netherlands in the style of STL", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "16:9", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 63839\nPrompt: Amsterdam, the Netherlands in the style of STL\n[!] txt2img mode\nUsing dev model\nfree=7995863048192\nDownloading weights\n2024-09-13T14:21:01Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpdprqlgou/weights url=https://replicate.delivery/yhqm/E000pz6pSZKcKxV3MyPTb57Zf3AJTXeQD199lp2Mms3fL64mA/trained_model.tar\n2024-09-13T14:21:02Z | INFO | [ Complete ] dest=/tmp/tmpdprqlgou/weights size=\"172 MB\" total_elapsed=1.124s url=https://replicate.delivery/yhqm/E000pz6pSZKcKxV3MyPTb57Zf3AJTXeQD199lp2Mms3fL64mA/trained_model.tar\nDownloaded weights in 1.15s\nLoaded LoRAs in 13.87s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.53it/s]\n 7%|▋ | 2/28 [00:00<00:06, 3.99it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.77it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.68it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.62it/s]\n 21%|██▏ | 6/28 [00:01<00:06, 3.59it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.58it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.56it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.56it/s]\n 36%|███▌ | 10/28 [00:02<00:05, 3.55it/s]\n 39%|███▉ | 11/28 [00:03<00:04, 3.55it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.55it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.54it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.54it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.54it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.54it/s]\n 61%|██████ | 17/28 [00:04<00:03, 3.54it/s]\n 64%|██████▍ | 18/28 [00:05<00:02, 3.54it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.54it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.54it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.54it/s]\n 79%|███████▊ | 22/28 [00:06<00:01, 3.54it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.54it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.54it/s]\n 89%|████████▉ | 25/28 [00:07<00:00, 3.54it/s]\n 93%|█████████▎| 26/28 [00:07<00:00, 3.54it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.54it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.53it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.56it/s]", "metrics": { "predict_time": 22.094252972, "total_time": 26.454184 }, "output": [ "https://replicate.delivery/yhqm/Tb3Kn1lM5oogPd7xYYPz4hON0pfBYaJCCkCQbwLPYG3x4PuJA/out-0.webp" ], "started_at": "2024-09-13T14:21:01.175931Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/g579vqhce1rm40chxf18m3y1y0", "cancel": "https://api.replicate.com/v1/predictions/g579vqhce1rm40chxf18m3y1y0/cancel" }, "version": "48ec7052507119a3d8e4ab31299faf1246275e39d4727ab3542c6a38e22ae839" }
Generated inUsing seed: 63839 Prompt: Amsterdam, the Netherlands in the style of STL [!] txt2img mode Using dev model free=7995863048192 Downloading weights 2024-09-13T14:21:01Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpdprqlgou/weights url=https://replicate.delivery/yhqm/E000pz6pSZKcKxV3MyPTb57Zf3AJTXeQD199lp2Mms3fL64mA/trained_model.tar 2024-09-13T14:21:02Z | INFO | [ Complete ] dest=/tmp/tmpdprqlgou/weights size="172 MB" total_elapsed=1.124s url=https://replicate.delivery/yhqm/E000pz6pSZKcKxV3MyPTb57Zf3AJTXeQD199lp2Mms3fL64mA/trained_model.tar Downloaded weights in 1.15s Loaded LoRAs in 13.87s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.53it/s] 7%|▋ | 2/28 [00:00<00:06, 3.99it/s] 11%|█ | 3/28 [00:00<00:06, 3.77it/s] 14%|█▍ | 4/28 [00:01<00:06, 3.68it/s] 18%|█▊ | 5/28 [00:01<00:06, 3.62it/s] 21%|██▏ | 6/28 [00:01<00:06, 3.59it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.58it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.56it/s] 32%|███▏ | 9/28 [00:02<00:05, 3.56it/s] 36%|███▌ | 10/28 [00:02<00:05, 3.55it/s] 39%|███▉ | 11/28 [00:03<00:04, 3.55it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.55it/s] 46%|████▋ | 13/28 [00:03<00:04, 3.54it/s] 50%|█████ | 14/28 [00:03<00:03, 3.54it/s] 54%|█████▎ | 15/28 [00:04<00:03, 3.54it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.54it/s] 61%|██████ | 17/28 [00:04<00:03, 3.54it/s] 64%|██████▍ | 18/28 [00:05<00:02, 3.54it/s] 68%|██████▊ | 19/28 [00:05<00:02, 3.54it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.54it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.54it/s] 79%|███████▊ | 22/28 [00:06<00:01, 3.54it/s] 82%|████████▏ | 23/28 [00:06<00:01, 3.54it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.54it/s] 89%|████████▉ | 25/28 [00:07<00:00, 3.54it/s] 93%|█████████▎| 26/28 [00:07<00:00, 3.54it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.54it/s] 100%|██████████| 28/28 [00:07<00:00, 3.53it/s] 100%|██████████| 28/28 [00:07<00:00, 3.56it/s]
Prediction
levelsio/san-andreas:48ec7052507119a3d8e4ab31299faf1246275e39d4727ab3542c6a38e22ae839Input
- model
- dev
- prompt
- man posing in front of neighbourhood in the style of STL with a circular road layout at sunset
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 16:9
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "man posing in front of neighbourhood in the style of STL with a circular road layout at sunset", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "16:9", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run levelsio/san-andreas using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "levelsio/san-andreas:48ec7052507119a3d8e4ab31299faf1246275e39d4727ab3542c6a38e22ae839", { input: { model: "dev", prompt: "man posing in front of neighbourhood in the style of STL with a circular road layout at sunset", lora_scale: 1, num_outputs: 1, aspect_ratio: "16:9", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run levelsio/san-andreas using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "levelsio/san-andreas:48ec7052507119a3d8e4ab31299faf1246275e39d4727ab3542c6a38e22ae839", input={ "model": "dev", "prompt": "man posing in front of neighbourhood in the style of STL with a circular road layout at sunset", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "16:9", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run levelsio/san-andreas using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "levelsio/san-andreas:48ec7052507119a3d8e4ab31299faf1246275e39d4727ab3542c6a38e22ae839", "input": { "model": "dev", "prompt": "man posing in front of neighbourhood in the style of STL with a circular road layout at sunset", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "16:9", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-13T14:26:50.423827Z", "created_at": "2024-09-13T14:25:59.667000Z", "data_removed": false, "error": null, "id": "6f8ejdpbedrm60chxf3b0sph6m", "input": { "model": "dev", "prompt": "man posing in front of neighbourhood in the style of STL with a circular road layout at sunset", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "16:9", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 54761\nPrompt: man posing in front of neighbourhood in the style of STL with a circular road layout at sunset\n[!] txt2img mode\nUsing dev model\nfree=7828227280896\nDownloading weights\n2024-09-13T14:26:25Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpi9xcj5iq/weights url=https://replicate.delivery/yhqm/E000pz6pSZKcKxV3MyPTb57Zf3AJTXeQD199lp2Mms3fL64mA/trained_model.tar\n2024-09-13T14:26:26Z | INFO | [ Complete ] dest=/tmp/tmpi9xcj5iq/weights size=\"172 MB\" total_elapsed=1.274s url=https://replicate.delivery/yhqm/E000pz6pSZKcKxV3MyPTb57Zf3AJTXeQD199lp2Mms3fL64mA/trained_model.tar\nDownloaded weights in 1.31s\nLoaded LoRAs in 15.94s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:09, 2.83it/s]\n 7%|▋ | 2/28 [00:00<00:07, 3.59it/s]\n 11%|█ | 3/28 [00:00<00:07, 3.57it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.56it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.56it/s]\n 21%|██▏ | 6/28 [00:01<00:06, 3.55it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.55it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.55it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.55it/s]\n 36%|███▌ | 10/28 [00:02<00:05, 3.55it/s]\n 39%|███▉ | 11/28 [00:03<00:04, 3.55it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.55it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.55it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.55it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.55it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.55it/s]\n 61%|██████ | 17/28 [00:04<00:03, 3.55it/s]\n 64%|██████▍ | 18/28 [00:05<00:02, 3.55it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.55it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.55it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.55it/s]\n 79%|███████▊ | 22/28 [00:06<00:01, 3.55it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.55it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.55it/s]\n 89%|████████▉ | 25/28 [00:07<00:00, 3.55it/s]\n 93%|█████████▎| 26/28 [00:07<00:00, 3.55it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.55it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.55it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.54it/s]", "metrics": { "predict_time": 25.099139663, "total_time": 50.756827 }, "output": [ "https://replicate.delivery/yhqm/NgHcc6GOdjYZD1QFM5pVAnqtiF6p8nJBnjJsulGXVebV7PuJA/out-0.webp" ], "started_at": "2024-09-13T14:26:25.324688Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/6f8ejdpbedrm60chxf3b0sph6m", "cancel": "https://api.replicate.com/v1/predictions/6f8ejdpbedrm60chxf3b0sph6m/cancel" }, "version": "48ec7052507119a3d8e4ab31299faf1246275e39d4727ab3542c6a38e22ae839" }
Generated inUsing seed: 54761 Prompt: man posing in front of neighbourhood in the style of STL with a circular road layout at sunset [!] txt2img mode Using dev model free=7828227280896 Downloading weights 2024-09-13T14:26:25Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpi9xcj5iq/weights url=https://replicate.delivery/yhqm/E000pz6pSZKcKxV3MyPTb57Zf3AJTXeQD199lp2Mms3fL64mA/trained_model.tar 2024-09-13T14:26:26Z | INFO | [ Complete ] dest=/tmp/tmpi9xcj5iq/weights size="172 MB" total_elapsed=1.274s url=https://replicate.delivery/yhqm/E000pz6pSZKcKxV3MyPTb57Zf3AJTXeQD199lp2Mms3fL64mA/trained_model.tar Downloaded weights in 1.31s Loaded LoRAs in 15.94s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:09, 2.83it/s] 7%|▋ | 2/28 [00:00<00:07, 3.59it/s] 11%|█ | 3/28 [00:00<00:07, 3.57it/s] 14%|█▍ | 4/28 [00:01<00:06, 3.56it/s] 18%|█▊ | 5/28 [00:01<00:06, 3.56it/s] 21%|██▏ | 6/28 [00:01<00:06, 3.55it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.55it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.55it/s] 32%|███▏ | 9/28 [00:02<00:05, 3.55it/s] 36%|███▌ | 10/28 [00:02<00:05, 3.55it/s] 39%|███▉ | 11/28 [00:03<00:04, 3.55it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.55it/s] 46%|████▋ | 13/28 [00:03<00:04, 3.55it/s] 50%|█████ | 14/28 [00:03<00:03, 3.55it/s] 54%|█████▎ | 15/28 [00:04<00:03, 3.55it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.55it/s] 61%|██████ | 17/28 [00:04<00:03, 3.55it/s] 64%|██████▍ | 18/28 [00:05<00:02, 3.55it/s] 68%|██████▊ | 19/28 [00:05<00:02, 3.55it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.55it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.55it/s] 79%|███████▊ | 22/28 [00:06<00:01, 3.55it/s] 82%|████████▏ | 23/28 [00:06<00:01, 3.55it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.55it/s] 89%|████████▉ | 25/28 [00:07<00:00, 3.55it/s] 93%|█████████▎| 26/28 [00:07<00:00, 3.55it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.55it/s] 100%|██████████| 28/28 [00:07<00:00, 3.55it/s] 100%|██████████| 28/28 [00:07<00:00, 3.54it/s]
Prediction
levelsio/san-andreas:b70fb777ee533a9fda6a842c88b96d7b5a34b5bfb1d7fa15bf63a72bc40ceb6aIDrd9zyddja5rm40chxh1s4e9ng8StatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- man posing in front of neighbourhood in the style of STL with a circular road layout at sunset
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "man posing in front of neighbourhood in the style of STL with a circular road layout at sunset", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run levelsio/san-andreas using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "levelsio/san-andreas:b70fb777ee533a9fda6a842c88b96d7b5a34b5bfb1d7fa15bf63a72bc40ceb6a", { input: { model: "dev", prompt: "man posing in front of neighbourhood in the style of STL with a circular road layout at sunset", lora_scale: 1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run levelsio/san-andreas using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "levelsio/san-andreas:b70fb777ee533a9fda6a842c88b96d7b5a34b5bfb1d7fa15bf63a72bc40ceb6a", input={ "model": "dev", "prompt": "man posing in front of neighbourhood in the style of STL with a circular road layout at sunset", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run levelsio/san-andreas using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "levelsio/san-andreas:b70fb777ee533a9fda6a842c88b96d7b5a34b5bfb1d7fa15bf63a72bc40ceb6a", "input": { "model": "dev", "prompt": "man posing in front of neighbourhood in the style of STL with a circular road layout at sunset", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-13T16:42:43.092532Z", "created_at": "2024-09-13T16:42:25.233000Z", "data_removed": false, "error": null, "id": "rd9zyddja5rm40chxh1s4e9ng8", "input": { "model": "dev", "prompt": "man posing in front of neighbourhood in the style of STL with a circular road layout at sunset", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 24888\nPrompt: man posing in front of neighbourhood in the style of STL with a circular road layout at sunset\n[!] txt2img mode\nUsing dev model\nLoaded LoRAs in 9.63s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.53it/s]\n 7%|▋ | 2/28 [00:00<00:06, 3.99it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.76it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.67it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.61it/s]\n 21%|██▏ | 6/28 [00:01<00:06, 3.58it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.57it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.56it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.55it/s]\n 36%|███▌ | 10/28 [00:02<00:05, 3.54it/s]\n 39%|███▉ | 11/28 [00:03<00:04, 3.54it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.54it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.54it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.54it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.54it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.54it/s]\n 61%|██████ | 17/28 [00:04<00:03, 3.53it/s]\n 64%|██████▍ | 18/28 [00:05<00:02, 3.53it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.53it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.53it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.53it/s]\n 79%|███████▊ | 22/28 [00:06<00:01, 3.53it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.53it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.53it/s]\n 89%|████████▉ | 25/28 [00:07<00:00, 3.53it/s]\n 93%|█████████▎| 26/28 [00:07<00:00, 3.53it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.53it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.53it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.56it/s]", "metrics": { "predict_time": 17.849874111, "total_time": 17.859532 }, "output": [ "https://replicate.delivery/yhqm/lyEfXqNVLdwqWiUvyhOFPucDfwmrhtZf9efAj8oG4BLdwOkbC/out-0.webp" ], "started_at": "2024-09-13T16:42:25.242658Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/rd9zyddja5rm40chxh1s4e9ng8", "cancel": "https://api.replicate.com/v1/predictions/rd9zyddja5rm40chxh1s4e9ng8/cancel" }, "version": "b70fb777ee533a9fda6a842c88b96d7b5a34b5bfb1d7fa15bf63a72bc40ceb6a" }
Generated inUsing seed: 24888 Prompt: man posing in front of neighbourhood in the style of STL with a circular road layout at sunset [!] txt2img mode Using dev model Loaded LoRAs in 9.63s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.53it/s] 7%|▋ | 2/28 [00:00<00:06, 3.99it/s] 11%|█ | 3/28 [00:00<00:06, 3.76it/s] 14%|█▍ | 4/28 [00:01<00:06, 3.67it/s] 18%|█▊ | 5/28 [00:01<00:06, 3.61it/s] 21%|██▏ | 6/28 [00:01<00:06, 3.58it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.57it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.56it/s] 32%|███▏ | 9/28 [00:02<00:05, 3.55it/s] 36%|███▌ | 10/28 [00:02<00:05, 3.54it/s] 39%|███▉ | 11/28 [00:03<00:04, 3.54it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.54it/s] 46%|████▋ | 13/28 [00:03<00:04, 3.54it/s] 50%|█████ | 14/28 [00:03<00:03, 3.54it/s] 54%|█████▎ | 15/28 [00:04<00:03, 3.54it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.54it/s] 61%|██████ | 17/28 [00:04<00:03, 3.53it/s] 64%|██████▍ | 18/28 [00:05<00:02, 3.53it/s] 68%|██████▊ | 19/28 [00:05<00:02, 3.53it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.53it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.53it/s] 79%|███████▊ | 22/28 [00:06<00:01, 3.53it/s] 82%|████████▏ | 23/28 [00:06<00:01, 3.53it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.53it/s] 89%|████████▉ | 25/28 [00:07<00:00, 3.53it/s] 93%|█████████▎| 26/28 [00:07<00:00, 3.53it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.53it/s] 100%|██████████| 28/28 [00:07<00:00, 3.53it/s] 100%|██████████| 28/28 [00:07<00:00, 3.56it/s]
Prediction
levelsio/san-andreas:b70fb777ee533a9fda6a842c88b96d7b5a34b5bfb1d7fa15bf63a72bc40ceb6aID475zpw2hc1rm60chxh2813t0jcStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- blonde man posing in front of neighbourhood in the style of STL with a circular road layout at sunset
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "blonde man posing in front of neighbourhood in the style of STL with a circular road layout at sunset", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run levelsio/san-andreas using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "levelsio/san-andreas:b70fb777ee533a9fda6a842c88b96d7b5a34b5bfb1d7fa15bf63a72bc40ceb6a", { input: { model: "dev", prompt: "blonde man posing in front of neighbourhood in the style of STL with a circular road layout at sunset", lora_scale: 1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run levelsio/san-andreas using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "levelsio/san-andreas:b70fb777ee533a9fda6a842c88b96d7b5a34b5bfb1d7fa15bf63a72bc40ceb6a", input={ "model": "dev", "prompt": "blonde man posing in front of neighbourhood in the style of STL with a circular road layout at sunset", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run levelsio/san-andreas using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "levelsio/san-andreas:b70fb777ee533a9fda6a842c88b96d7b5a34b5bfb1d7fa15bf63a72bc40ceb6a", "input": { "model": "dev", "prompt": "blonde man posing in front of neighbourhood in the style of STL with a circular road layout at sunset", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-13T16:43:14.229439Z", "created_at": "2024-09-13T16:43:05.952000Z", "data_removed": false, "error": null, "id": "475zpw2hc1rm60chxh2813t0jc", "input": { "model": "dev", "prompt": "blonde man posing in front of neighbourhood in the style of STL with a circular road layout at sunset", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 14994\nPrompt: blonde man posing in front of neighbourhood in the style of STL with a circular road layout at sunset\n[!] txt2img mode\nUsing dev model\nWeights already loaded\nLoaded LoRAs in 0.03s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.53it/s]\n 7%|▋ | 2/28 [00:00<00:06, 3.99it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.76it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.66it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.61it/s]\n 21%|██▏ | 6/28 [00:01<00:06, 3.58it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.56it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.54it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.53it/s]\n 36%|███▌ | 10/28 [00:02<00:05, 3.53it/s]\n 39%|███▉ | 11/28 [00:03<00:04, 3.52it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.52it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.52it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.52it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.52it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.52it/s]\n 61%|██████ | 17/28 [00:04<00:03, 3.52it/s]\n 64%|██████▍ | 18/28 [00:05<00:02, 3.52it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.52it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.52it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.52it/s]\n 79%|███████▊ | 22/28 [00:06<00:01, 3.52it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.52it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.52it/s]\n 89%|████████▉ | 25/28 [00:07<00:00, 3.52it/s]\n 93%|█████████▎| 26/28 [00:07<00:00, 3.52it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.52it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.52it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.54it/s]", "metrics": { "predict_time": 8.26921725, "total_time": 8.277439 }, "output": [ "https://replicate.delivery/yhqm/R5en65fXPFrgi00o75XGdZqPs0x5b4EnBcBx4HyxooPi2hcTA/out-0.webp" ], "started_at": "2024-09-13T16:43:05.960222Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/475zpw2hc1rm60chxh2813t0jc", "cancel": "https://api.replicate.com/v1/predictions/475zpw2hc1rm60chxh2813t0jc/cancel" }, "version": "b70fb777ee533a9fda6a842c88b96d7b5a34b5bfb1d7fa15bf63a72bc40ceb6a" }
Generated inUsing seed: 14994 Prompt: blonde man posing in front of neighbourhood in the style of STL with a circular road layout at sunset [!] txt2img mode Using dev model Weights already loaded Loaded LoRAs in 0.03s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.53it/s] 7%|▋ | 2/28 [00:00<00:06, 3.99it/s] 11%|█ | 3/28 [00:00<00:06, 3.76it/s] 14%|█▍ | 4/28 [00:01<00:06, 3.66it/s] 18%|█▊ | 5/28 [00:01<00:06, 3.61it/s] 21%|██▏ | 6/28 [00:01<00:06, 3.58it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.56it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.54it/s] 32%|███▏ | 9/28 [00:02<00:05, 3.53it/s] 36%|███▌ | 10/28 [00:02<00:05, 3.53it/s] 39%|███▉ | 11/28 [00:03<00:04, 3.52it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.52it/s] 46%|████▋ | 13/28 [00:03<00:04, 3.52it/s] 50%|█████ | 14/28 [00:03<00:03, 3.52it/s] 54%|█████▎ | 15/28 [00:04<00:03, 3.52it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.52it/s] 61%|██████ | 17/28 [00:04<00:03, 3.52it/s] 64%|██████▍ | 18/28 [00:05<00:02, 3.52it/s] 68%|██████▊ | 19/28 [00:05<00:02, 3.52it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.52it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.52it/s] 79%|███████▊ | 22/28 [00:06<00:01, 3.52it/s] 82%|████████▏ | 23/28 [00:06<00:01, 3.52it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.52it/s] 89%|████████▉ | 25/28 [00:07<00:00, 3.52it/s] 93%|█████████▎| 26/28 [00:07<00:00, 3.52it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.52it/s] 100%|██████████| 28/28 [00:07<00:00, 3.52it/s] 100%|██████████| 28/28 [00:07<00:00, 3.54it/s]
Prediction
levelsio/san-andreas:b70fb777ee533a9fda6a842c88b96d7b5a34b5bfb1d7fa15bf63a72bc40ceb6aID8nnxc9y9jxrm60chxh2vz4z1yrStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- blonde woman posing in front of neighbourhood in the style of STL with a circular road layout at sunset
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "blonde woman posing in front of neighbourhood in the style of STL with a circular road layout at sunset", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run levelsio/san-andreas using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "levelsio/san-andreas:b70fb777ee533a9fda6a842c88b96d7b5a34b5bfb1d7fa15bf63a72bc40ceb6a", { input: { model: "dev", prompt: "blonde woman posing in front of neighbourhood in the style of STL with a circular road layout at sunset", lora_scale: 1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run levelsio/san-andreas using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "levelsio/san-andreas:b70fb777ee533a9fda6a842c88b96d7b5a34b5bfb1d7fa15bf63a72bc40ceb6a", input={ "model": "dev", "prompt": "blonde woman posing in front of neighbourhood in the style of STL with a circular road layout at sunset", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run levelsio/san-andreas using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "levelsio/san-andreas:b70fb777ee533a9fda6a842c88b96d7b5a34b5bfb1d7fa15bf63a72bc40ceb6a", "input": { "model": "dev", "prompt": "blonde woman posing in front of neighbourhood in the style of STL with a circular road layout at sunset", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-13T16:45:01.050782Z", "created_at": "2024-09-13T16:44:42.263000Z", "data_removed": false, "error": null, "id": "8nnxc9y9jxrm60chxh2vz4z1yr", "input": { "model": "dev", "prompt": "blonde woman posing in front of neighbourhood in the style of STL with a circular road layout at sunset", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 36836\nPrompt: blonde woman posing in front of neighbourhood in the style of STL with a circular road layout at sunset\n[!] txt2img mode\nUsing dev model\nfree=7274291617792\nDownloading weights\n2024-09-13T16:44:42Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpxrdqoost/weights url=https://replicate.delivery/yhqm/vufmKxRU5Q11GK9mVFtlje6Q4pEpSZGdjef84baSV1xfNJkbC/trained_model.tar\n2024-09-13T16:44:43Z | INFO | [ Complete ] dest=/tmp/tmpxrdqoost/weights size=\"172 MB\" total_elapsed=1.152s url=https://replicate.delivery/yhqm/vufmKxRU5Q11GK9mVFtlje6Q4pEpSZGdjef84baSV1xfNJkbC/trained_model.tar\nDownloaded weights in 1.18s\nLoaded LoRAs in 10.59s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.54it/s]\n 7%|▋ | 2/28 [00:00<00:06, 4.00it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.78it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.68it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.63it/s]\n 21%|██▏ | 6/28 [00:01<00:06, 3.59it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.57it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.56it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.55it/s]\n 36%|███▌ | 10/28 [00:02<00:05, 3.55it/s]\n 39%|███▉ | 11/28 [00:03<00:04, 3.54it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.54it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.54it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.54it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.54it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.54it/s]\n 61%|██████ | 17/28 [00:04<00:03, 3.54it/s]\n 64%|██████▍ | 18/28 [00:05<00:02, 3.54it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.54it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.53it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.53it/s]\n 79%|███████▊ | 22/28 [00:06<00:01, 3.52it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.54it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.54it/s]\n 89%|████████▉ | 25/28 [00:07<00:00, 3.54it/s]\n 93%|█████████▎| 26/28 [00:07<00:00, 3.54it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.54it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.54it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.56it/s]", "metrics": { "predict_time": 18.778944717999998, "total_time": 18.787782 }, "output": [ "https://replicate.delivery/yhqm/TsjgNhCTNVpeDijqMcP2RPAXfflW9J5WQQWkYclYXf31gHyNB/out-0.webp" ], "started_at": "2024-09-13T16:44:42.271837Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/8nnxc9y9jxrm60chxh2vz4z1yr", "cancel": "https://api.replicate.com/v1/predictions/8nnxc9y9jxrm60chxh2vz4z1yr/cancel" }, "version": "b70fb777ee533a9fda6a842c88b96d7b5a34b5bfb1d7fa15bf63a72bc40ceb6a" }
Generated inUsing seed: 36836 Prompt: blonde woman posing in front of neighbourhood in the style of STL with a circular road layout at sunset [!] txt2img mode Using dev model free=7274291617792 Downloading weights 2024-09-13T16:44:42Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpxrdqoost/weights url=https://replicate.delivery/yhqm/vufmKxRU5Q11GK9mVFtlje6Q4pEpSZGdjef84baSV1xfNJkbC/trained_model.tar 2024-09-13T16:44:43Z | INFO | [ Complete ] dest=/tmp/tmpxrdqoost/weights size="172 MB" total_elapsed=1.152s url=https://replicate.delivery/yhqm/vufmKxRU5Q11GK9mVFtlje6Q4pEpSZGdjef84baSV1xfNJkbC/trained_model.tar Downloaded weights in 1.18s Loaded LoRAs in 10.59s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.54it/s] 7%|▋ | 2/28 [00:00<00:06, 4.00it/s] 11%|█ | 3/28 [00:00<00:06, 3.78it/s] 14%|█▍ | 4/28 [00:01<00:06, 3.68it/s] 18%|█▊ | 5/28 [00:01<00:06, 3.63it/s] 21%|██▏ | 6/28 [00:01<00:06, 3.59it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.57it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.56it/s] 32%|███▏ | 9/28 [00:02<00:05, 3.55it/s] 36%|███▌ | 10/28 [00:02<00:05, 3.55it/s] 39%|███▉ | 11/28 [00:03<00:04, 3.54it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.54it/s] 46%|████▋ | 13/28 [00:03<00:04, 3.54it/s] 50%|█████ | 14/28 [00:03<00:03, 3.54it/s] 54%|█████▎ | 15/28 [00:04<00:03, 3.54it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.54it/s] 61%|██████ | 17/28 [00:04<00:03, 3.54it/s] 64%|██████▍ | 18/28 [00:05<00:02, 3.54it/s] 68%|██████▊ | 19/28 [00:05<00:02, 3.54it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.53it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.53it/s] 79%|███████▊ | 22/28 [00:06<00:01, 3.52it/s] 82%|████████▏ | 23/28 [00:06<00:01, 3.54it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.54it/s] 89%|████████▉ | 25/28 [00:07<00:00, 3.54it/s] 93%|█████████▎| 26/28 [00:07<00:00, 3.54it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.54it/s] 100%|██████████| 28/28 [00:07<00:00, 3.54it/s] 100%|██████████| 28/28 [00:07<00:00, 3.56it/s]
Prediction
levelsio/san-andreas:b70fb777ee533a9fda6a842c88b96d7b5a34b5bfb1d7fa15bf63a72bc40ceb6aID10a716e74srm00chxh38v54ferStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- man driving BMX in a street the style of STL with a circular road layout, view from the back
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "man driving BMX in a street the style of STL with a circular road layout, view from the back", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run levelsio/san-andreas using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "levelsio/san-andreas:b70fb777ee533a9fda6a842c88b96d7b5a34b5bfb1d7fa15bf63a72bc40ceb6a", { input: { model: "dev", prompt: "man driving BMX in a street the style of STL with a circular road layout, view from the back", lora_scale: 1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run levelsio/san-andreas using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "levelsio/san-andreas:b70fb777ee533a9fda6a842c88b96d7b5a34b5bfb1d7fa15bf63a72bc40ceb6a", input={ "model": "dev", "prompt": "man driving BMX in a street the style of STL with a circular road layout, view from the back", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run levelsio/san-andreas using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "levelsio/san-andreas:b70fb777ee533a9fda6a842c88b96d7b5a34b5bfb1d7fa15bf63a72bc40ceb6a", "input": { "model": "dev", "prompt": "man driving BMX in a street the style of STL with a circular road layout, view from the back", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-13T16:46:05.024204Z", "created_at": "2024-09-13T16:45:47.174000Z", "data_removed": false, "error": null, "id": "10a716e74srm00chxh38v54fer", "input": { "model": "dev", "prompt": "man driving BMX in a street the style of STL with a circular road layout, view from the back", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 41392\nPrompt: man driving BMX in a street the style of STL with a circular road layout, view from the back\n[!] txt2img mode\nUsing dev model\nLoaded LoRAs in 9.58s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.52it/s]\n 7%|▋ | 2/28 [00:00<00:06, 3.98it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.75it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.66it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.61it/s]\n 21%|██▏ | 6/28 [00:01<00:06, 3.58it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.56it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.55it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.54it/s]\n 36%|███▌ | 10/28 [00:02<00:05, 3.53it/s]\n 39%|███▉ | 11/28 [00:03<00:04, 3.53it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.52it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.52it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.52it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.52it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.52it/s]\n 61%|██████ | 17/28 [00:04<00:03, 3.52it/s]\n 64%|██████▍ | 18/28 [00:05<00:02, 3.52it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.52it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.52it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.52it/s]\n 79%|███████▊ | 22/28 [00:06<00:01, 3.52it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.52it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.52it/s]\n 89%|████████▉ | 25/28 [00:07<00:00, 3.52it/s]\n 93%|█████████▎| 26/28 [00:07<00:00, 3.52it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.52it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.52it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.54it/s]", "metrics": { "predict_time": 17.8427018, "total_time": 17.850204 }, "output": [ "https://replicate.delivery/yhqm/RaXorc9UMpLeTag0zk6yK7TeQOdZhlKqzwFRkq3aWn8N5hcTA/out-0.webp" ], "started_at": "2024-09-13T16:45:47.181502Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/10a716e74srm00chxh38v54fer", "cancel": "https://api.replicate.com/v1/predictions/10a716e74srm00chxh38v54fer/cancel" }, "version": "b70fb777ee533a9fda6a842c88b96d7b5a34b5bfb1d7fa15bf63a72bc40ceb6a" }
Generated inUsing seed: 41392 Prompt: man driving BMX in a street the style of STL with a circular road layout, view from the back [!] txt2img mode Using dev model Loaded LoRAs in 9.58s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.52it/s] 7%|▋ | 2/28 [00:00<00:06, 3.98it/s] 11%|█ | 3/28 [00:00<00:06, 3.75it/s] 14%|█▍ | 4/28 [00:01<00:06, 3.66it/s] 18%|█▊ | 5/28 [00:01<00:06, 3.61it/s] 21%|██▏ | 6/28 [00:01<00:06, 3.58it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.56it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.55it/s] 32%|███▏ | 9/28 [00:02<00:05, 3.54it/s] 36%|███▌ | 10/28 [00:02<00:05, 3.53it/s] 39%|███▉ | 11/28 [00:03<00:04, 3.53it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.52it/s] 46%|████▋ | 13/28 [00:03<00:04, 3.52it/s] 50%|█████ | 14/28 [00:03<00:03, 3.52it/s] 54%|█████▎ | 15/28 [00:04<00:03, 3.52it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.52it/s] 61%|██████ | 17/28 [00:04<00:03, 3.52it/s] 64%|██████▍ | 18/28 [00:05<00:02, 3.52it/s] 68%|██████▊ | 19/28 [00:05<00:02, 3.52it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.52it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.52it/s] 79%|███████▊ | 22/28 [00:06<00:01, 3.52it/s] 82%|████████▏ | 23/28 [00:06<00:01, 3.52it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.52it/s] 89%|████████▉ | 25/28 [00:07<00:00, 3.52it/s] 93%|█████████▎| 26/28 [00:07<00:00, 3.52it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.52it/s] 100%|██████████| 28/28 [00:07<00:00, 3.52it/s] 100%|██████████| 28/28 [00:07<00:00, 3.54it/s]
Prediction
levelsio/san-andreas:b70fb777ee533a9fda6a842c88b96d7b5a34b5bfb1d7fa15bf63a72bc40ceb6aIDygsjdg9tg1rm40chxh3rg7amcgStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- blonde woman driving BMX in a street the style of STL with a circular road layout, view from the back
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "blonde woman driving BMX in a street the style of STL with a circular road layout, view from the back", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run levelsio/san-andreas using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "levelsio/san-andreas:b70fb777ee533a9fda6a842c88b96d7b5a34b5bfb1d7fa15bf63a72bc40ceb6a", { input: { model: "dev", prompt: "blonde woman driving BMX in a street the style of STL with a circular road layout, view from the back", lora_scale: 1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run levelsio/san-andreas using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "levelsio/san-andreas:b70fb777ee533a9fda6a842c88b96d7b5a34b5bfb1d7fa15bf63a72bc40ceb6a", input={ "model": "dev", "prompt": "blonde woman driving BMX in a street the style of STL with a circular road layout, view from the back", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run levelsio/san-andreas using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "levelsio/san-andreas:b70fb777ee533a9fda6a842c88b96d7b5a34b5bfb1d7fa15bf63a72bc40ceb6a", "input": { "model": "dev", "prompt": "blonde woman driving BMX in a street the style of STL with a circular road layout, view from the back", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-13T16:46:33.574369Z", "created_at": "2024-09-13T16:46:16.704000Z", "data_removed": false, "error": null, "id": "ygsjdg9tg1rm40chxh3rg7amcg", "input": { "model": "dev", "prompt": "blonde woman driving BMX in a street the style of STL with a circular road layout, view from the back", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 41978\nPrompt: blonde woman driving BMX in a street the style of STL with a circular road layout, view from the back\n[!] txt2img mode\nUsing dev model\nLoaded LoRAs in 8.59s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.52it/s]\n 7%|▋ | 2/28 [00:00<00:06, 3.99it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.75it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.65it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.61it/s]\n 21%|██▏ | 6/28 [00:01<00:06, 3.57it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.56it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.54it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.53it/s]\n 36%|███▌ | 10/28 [00:02<00:05, 3.53it/s]\n 39%|███▉ | 11/28 [00:03<00:04, 3.52it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.52it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.52it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.52it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.52it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.52it/s]\n 61%|██████ | 17/28 [00:04<00:03, 3.52it/s]\n 64%|██████▍ | 18/28 [00:05<00:02, 3.52it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.51it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.51it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.51it/s]\n 79%|███████▊ | 22/28 [00:06<00:01, 3.52it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.51it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.51it/s]\n 89%|████████▉ | 25/28 [00:07<00:00, 3.51it/s]\n 93%|█████████▎| 26/28 [00:07<00:00, 3.51it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.51it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.51it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.54it/s]", "metrics": { "predict_time": 16.859620906, "total_time": 16.870369 }, "output": [ "https://replicate.delivery/yhqm/lFgUo9Gx12YpLRQvf0DRnto5iUrXessmcofEDlXndSHSzD5mA/out-0.webp" ], "started_at": "2024-09-13T16:46:16.714748Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/ygsjdg9tg1rm40chxh3rg7amcg", "cancel": "https://api.replicate.com/v1/predictions/ygsjdg9tg1rm40chxh3rg7amcg/cancel" }, "version": "b70fb777ee533a9fda6a842c88b96d7b5a34b5bfb1d7fa15bf63a72bc40ceb6a" }
Generated inUsing seed: 41978 Prompt: blonde woman driving BMX in a street the style of STL with a circular road layout, view from the back [!] txt2img mode Using dev model Loaded LoRAs in 8.59s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.52it/s] 7%|▋ | 2/28 [00:00<00:06, 3.99it/s] 11%|█ | 3/28 [00:00<00:06, 3.75it/s] 14%|█▍ | 4/28 [00:01<00:06, 3.65it/s] 18%|█▊ | 5/28 [00:01<00:06, 3.61it/s] 21%|██▏ | 6/28 [00:01<00:06, 3.57it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.56it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.54it/s] 32%|███▏ | 9/28 [00:02<00:05, 3.53it/s] 36%|███▌ | 10/28 [00:02<00:05, 3.53it/s] 39%|███▉ | 11/28 [00:03<00:04, 3.52it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.52it/s] 46%|████▋ | 13/28 [00:03<00:04, 3.52it/s] 50%|█████ | 14/28 [00:03<00:03, 3.52it/s] 54%|█████▎ | 15/28 [00:04<00:03, 3.52it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.52it/s] 61%|██████ | 17/28 [00:04<00:03, 3.52it/s] 64%|██████▍ | 18/28 [00:05<00:02, 3.52it/s] 68%|██████▊ | 19/28 [00:05<00:02, 3.51it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.51it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.51it/s] 79%|███████▊ | 22/28 [00:06<00:01, 3.52it/s] 82%|████████▏ | 23/28 [00:06<00:01, 3.51it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.51it/s] 89%|████████▉ | 25/28 [00:07<00:00, 3.51it/s] 93%|█████████▎| 26/28 [00:07<00:00, 3.51it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.51it/s] 100%|██████████| 28/28 [00:07<00:00, 3.51it/s] 100%|██████████| 28/28 [00:07<00:00, 3.54it/s]
Prediction
levelsio/san-andreas:b70fb777ee533a9fda6a842c88b96d7b5a34b5bfb1d7fa15bf63a72bc40ceb6aID5fp43xf2snrm60chxh7a93ecj0StatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- beach village from the sky in Portugal in the style of STL. houses have orange roofs
- lora_scale
- 1.05
- num_outputs
- 1
- aspect_ratio
- 16:9
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "beach village from the sky in Portugal in the style of STL. houses have orange roofs", "lora_scale": 1.05, "num_outputs": 1, "aspect_ratio": "16:9", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run levelsio/san-andreas using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "levelsio/san-andreas:b70fb777ee533a9fda6a842c88b96d7b5a34b5bfb1d7fa15bf63a72bc40ceb6a", { input: { model: "dev", prompt: "beach village from the sky in Portugal in the style of STL. houses have orange roofs", lora_scale: 1.05, num_outputs: 1, aspect_ratio: "16:9", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run levelsio/san-andreas using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "levelsio/san-andreas:b70fb777ee533a9fda6a842c88b96d7b5a34b5bfb1d7fa15bf63a72bc40ceb6a", input={ "model": "dev", "prompt": "beach village from the sky in Portugal in the style of STL. houses have orange roofs", "lora_scale": 1.05, "num_outputs": 1, "aspect_ratio": "16:9", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run levelsio/san-andreas using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "levelsio/san-andreas:b70fb777ee533a9fda6a842c88b96d7b5a34b5bfb1d7fa15bf63a72bc40ceb6a", "input": { "model": "dev", "prompt": "beach village from the sky in Portugal in the style of STL. houses have orange roofs", "lora_scale": 1.05, "num_outputs": 1, "aspect_ratio": "16:9", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-13T16:54:58.245807Z", "created_at": "2024-09-13T16:54:38.541000Z", "data_removed": false, "error": null, "id": "5fp43xf2snrm60chxh7a93ecj0", "input": { "model": "dev", "prompt": "beach village from the sky in Portugal in the style of STL. houses have orange roofs", "lora_scale": 1.05, "num_outputs": 1, "aspect_ratio": "16:9", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 37731\nPrompt: beach village from the sky in Portugal in the style of STL. houses have orange roofs\n[!] txt2img mode\nUsing dev model\nLoaded LoRAs in 7.41s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.44it/s]\n 7%|▋ | 2/28 [00:00<00:06, 3.81it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.68it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.62it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.59it/s]\n 21%|██▏ | 6/28 [00:01<00:06, 3.56it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.56it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.55it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.54it/s]\n 36%|███▌ | 10/28 [00:02<00:05, 3.54it/s]\n 39%|███▉ | 11/28 [00:03<00:04, 3.53it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.54it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.54it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.54it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.53it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.54it/s]\n 61%|██████ | 17/28 [00:04<00:03, 3.54it/s]\n 64%|██████▍ | 18/28 [00:05<00:02, 3.53it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.53it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.53it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.53it/s]\n 79%|███████▊ | 22/28 [00:06<00:01, 3.53it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.53it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.53it/s]\n 89%|████████▉ | 25/28 [00:07<00:00, 3.53it/s]\n 93%|█████████▎| 26/28 [00:07<00:00, 3.53it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.53it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.53it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.55it/s]", "metrics": { "predict_time": 15.650811618, "total_time": 19.704807 }, "output": [ "https://replicate.delivery/yhqm/ymM1zHctQSY0F9Cfsd34RpCaKrYlZUveUfiiegr37biIGIyNB/out-0.webp" ], "started_at": "2024-09-13T16:54:42.594995Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/5fp43xf2snrm60chxh7a93ecj0", "cancel": "https://api.replicate.com/v1/predictions/5fp43xf2snrm60chxh7a93ecj0/cancel" }, "version": "b70fb777ee533a9fda6a842c88b96d7b5a34b5bfb1d7fa15bf63a72bc40ceb6a" }
Generated inUsing seed: 37731 Prompt: beach village from the sky in Portugal in the style of STL. houses have orange roofs [!] txt2img mode Using dev model Loaded LoRAs in 7.41s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.44it/s] 7%|▋ | 2/28 [00:00<00:06, 3.81it/s] 11%|█ | 3/28 [00:00<00:06, 3.68it/s] 14%|█▍ | 4/28 [00:01<00:06, 3.62it/s] 18%|█▊ | 5/28 [00:01<00:06, 3.59it/s] 21%|██▏ | 6/28 [00:01<00:06, 3.56it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.56it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.55it/s] 32%|███▏ | 9/28 [00:02<00:05, 3.54it/s] 36%|███▌ | 10/28 [00:02<00:05, 3.54it/s] 39%|███▉ | 11/28 [00:03<00:04, 3.53it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.54it/s] 46%|████▋ | 13/28 [00:03<00:04, 3.54it/s] 50%|█████ | 14/28 [00:03<00:03, 3.54it/s] 54%|█████▎ | 15/28 [00:04<00:03, 3.53it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.54it/s] 61%|██████ | 17/28 [00:04<00:03, 3.54it/s] 64%|██████▍ | 18/28 [00:05<00:02, 3.53it/s] 68%|██████▊ | 19/28 [00:05<00:02, 3.53it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.53it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.53it/s] 79%|███████▊ | 22/28 [00:06<00:01, 3.53it/s] 82%|████████▏ | 23/28 [00:06<00:01, 3.53it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.53it/s] 89%|████████▉ | 25/28 [00:07<00:00, 3.53it/s] 93%|█████████▎| 26/28 [00:07<00:00, 3.53it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.53it/s] 100%|██████████| 28/28 [00:07<00:00, 3.53it/s] 100%|██████████| 28/28 [00:07<00:00, 3.55it/s]
Prediction
levelsio/san-andreas:48ec7052507119a3d8e4ab31299faf1246275e39d4727ab3542c6a38e22ae839IDeffdzc96bnrm20chxeysx81nj4StatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- New York City in the style of STL
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 16:9
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "New York City in the style of STL", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "16:9", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run levelsio/san-andreas using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "levelsio/san-andreas:48ec7052507119a3d8e4ab31299faf1246275e39d4727ab3542c6a38e22ae839", { input: { model: "dev", prompt: "New York City in the style of STL", lora_scale: 1, num_outputs: 1, aspect_ratio: "16:9", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run levelsio/san-andreas using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "levelsio/san-andreas:48ec7052507119a3d8e4ab31299faf1246275e39d4727ab3542c6a38e22ae839", input={ "model": "dev", "prompt": "New York City in the style of STL", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "16:9", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run levelsio/san-andreas using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "levelsio/san-andreas:48ec7052507119a3d8e4ab31299faf1246275e39d4727ab3542c6a38e22ae839", "input": { "model": "dev", "prompt": "New York City in the style of STL", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "16:9", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-13T14:15:51.820837Z", "created_at": "2024-09-13T14:15:27.581000Z", "data_removed": false, "error": null, "id": "effdzc96bnrm20chxeysx81nj4", "input": { "model": "dev", "prompt": "New York City in the style of STL", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "16:9", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 62609\nPrompt: New York City in the style of STL\n[!] txt2img mode\nUsing dev model\nfree=7244219662336\nDownloading weights\n2024-09-13T14:15:33Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmp2ktwfxvv/weights url=https://replicate.delivery/yhqm/E000pz6pSZKcKxV3MyPTb57Zf3AJTXeQD199lp2Mms3fL64mA/trained_model.tar\n2024-09-13T14:15:35Z | INFO | [ Complete ] dest=/tmp/tmp2ktwfxvv/weights size=\"172 MB\" total_elapsed=1.773s url=https://replicate.delivery/yhqm/E000pz6pSZKcKxV3MyPTb57Zf3AJTXeQD199lp2Mms3fL64mA/trained_model.tar\nDownloaded weights in 1.80s\nLoaded LoRAs in 10.14s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.56it/s]\n 7%|▋ | 2/28 [00:00<00:06, 4.03it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.80it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.70it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.65it/s]\n 21%|██▏ | 6/28 [00:01<00:06, 3.62it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.60it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.59it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.58it/s]\n 36%|███▌ | 10/28 [00:02<00:05, 3.57it/s]\n 39%|███▉ | 11/28 [00:03<00:04, 3.57it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.57it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.57it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.56it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.56it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.56it/s]\n 61%|██████ | 17/28 [00:04<00:03, 3.56it/s]\n 64%|██████▍ | 18/28 [00:04<00:02, 3.56it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.56it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.56it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.56it/s]\n 79%|███████▊ | 22/28 [00:06<00:01, 3.56it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.56it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.56it/s]\n 89%|████████▉ | 25/28 [00:06<00:00, 3.56it/s]\n 93%|█████████▎| 26/28 [00:07<00:00, 3.56it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.56it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.56it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.58it/s]", "metrics": { "predict_time": 18.324876414, "total_time": 24.239837 }, "output": [ "https://replicate.delivery/yhqm/6weKx319oDRcIa3m79x6BWKsR00xB1Sd083M4IvbVu2L2PuJA/out-0.webp" ], "started_at": "2024-09-13T14:15:33.495961Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/effdzc96bnrm20chxeysx81nj4", "cancel": "https://api.replicate.com/v1/predictions/effdzc96bnrm20chxeysx81nj4/cancel" }, "version": "48ec7052507119a3d8e4ab31299faf1246275e39d4727ab3542c6a38e22ae839" }
Generated inUsing seed: 62609 Prompt: New York City in the style of STL [!] txt2img mode Using dev model free=7244219662336 Downloading weights 2024-09-13T14:15:33Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmp2ktwfxvv/weights url=https://replicate.delivery/yhqm/E000pz6pSZKcKxV3MyPTb57Zf3AJTXeQD199lp2Mms3fL64mA/trained_model.tar 2024-09-13T14:15:35Z | INFO | [ Complete ] dest=/tmp/tmp2ktwfxvv/weights size="172 MB" total_elapsed=1.773s url=https://replicate.delivery/yhqm/E000pz6pSZKcKxV3MyPTb57Zf3AJTXeQD199lp2Mms3fL64mA/trained_model.tar Downloaded weights in 1.80s Loaded LoRAs in 10.14s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.56it/s] 7%|▋ | 2/28 [00:00<00:06, 4.03it/s] 11%|█ | 3/28 [00:00<00:06, 3.80it/s] 14%|█▍ | 4/28 [00:01<00:06, 3.70it/s] 18%|█▊ | 5/28 [00:01<00:06, 3.65it/s] 21%|██▏ | 6/28 [00:01<00:06, 3.62it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.60it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.59it/s] 32%|███▏ | 9/28 [00:02<00:05, 3.58it/s] 36%|███▌ | 10/28 [00:02<00:05, 3.57it/s] 39%|███▉ | 11/28 [00:03<00:04, 3.57it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.57it/s] 46%|████▋ | 13/28 [00:03<00:04, 3.57it/s] 50%|█████ | 14/28 [00:03<00:03, 3.56it/s] 54%|█████▎ | 15/28 [00:04<00:03, 3.56it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.56it/s] 61%|██████ | 17/28 [00:04<00:03, 3.56it/s] 64%|██████▍ | 18/28 [00:04<00:02, 3.56it/s] 68%|██████▊ | 19/28 [00:05<00:02, 3.56it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.56it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.56it/s] 79%|███████▊ | 22/28 [00:06<00:01, 3.56it/s] 82%|████████▏ | 23/28 [00:06<00:01, 3.56it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.56it/s] 89%|████████▉ | 25/28 [00:06<00:00, 3.56it/s] 93%|█████████▎| 26/28 [00:07<00:00, 3.56it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.56it/s] 100%|██████████| 28/28 [00:07<00:00, 3.56it/s] 100%|██████████| 28/28 [00:07<00:00, 3.58it/s]
Prediction
levelsio/san-andreas:48ec7052507119a3d8e4ab31299faf1246275e39d4727ab3542c6a38e22ae839IDttfvh7dp8drm00chxf0vt1phvwStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- San Francisco bridge in the style of STL
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 16:9
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "San Francisco bridge in the style of STL", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "16:9", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run levelsio/san-andreas using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "levelsio/san-andreas:48ec7052507119a3d8e4ab31299faf1246275e39d4727ab3542c6a38e22ae839", { input: { model: "dev", prompt: "San Francisco bridge in the style of STL", lora_scale: 1, num_outputs: 1, aspect_ratio: "16:9", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run levelsio/san-andreas using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "levelsio/san-andreas:48ec7052507119a3d8e4ab31299faf1246275e39d4727ab3542c6a38e22ae839", input={ "model": "dev", "prompt": "San Francisco bridge in the style of STL", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "16:9", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run levelsio/san-andreas using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "levelsio/san-andreas:48ec7052507119a3d8e4ab31299faf1246275e39d4727ab3542c6a38e22ae839", "input": { "model": "dev", "prompt": "San Francisco bridge in the style of STL", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "16:9", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-13T14:20:45.095563Z", "created_at": "2024-09-13T14:20:26.563000Z", "data_removed": false, "error": null, "id": "ttfvh7dp8drm00chxf0vt1phvw", "input": { "model": "dev", "prompt": "San Francisco bridge in the style of STL", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "16:9", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 16152\nPrompt: San Francisco bridge in the style of STL\n[!] txt2img mode\nUsing dev model\nfree=6881752465408\nDownloading weights\n2024-09-13T14:20:26Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmp_a7uq672/weights url=https://replicate.delivery/yhqm/E000pz6pSZKcKxV3MyPTb57Zf3AJTXeQD199lp2Mms3fL64mA/trained_model.tar\n2024-09-13T14:20:28Z | INFO | [ Complete ] dest=/tmp/tmp_a7uq672/weights size=\"172 MB\" total_elapsed=1.639s url=https://replicate.delivery/yhqm/E000pz6pSZKcKxV3MyPTb57Zf3AJTXeQD199lp2Mms3fL64mA/trained_model.tar\nDownloaded weights in 1.67s\nLoaded LoRAs in 10.37s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.56it/s]\n 7%|▋ | 2/28 [00:00<00:06, 4.03it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.80it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.70it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.65it/s]\n 21%|██▏ | 6/28 [00:01<00:06, 3.62it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.60it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.58it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.58it/s]\n 36%|███▌ | 10/28 [00:02<00:05, 3.57it/s]\n 39%|███▉ | 11/28 [00:03<00:04, 3.57it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.56it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.56it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.56it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.56it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.55it/s]\n 61%|██████ | 17/28 [00:04<00:03, 3.56it/s]\n 64%|██████▍ | 18/28 [00:05<00:02, 3.56it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.56it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.56it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.55it/s]\n 79%|███████▊ | 22/28 [00:06<00:01, 3.55it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.55it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.55it/s]\n 89%|████████▉ | 25/28 [00:06<00:00, 3.56it/s]\n 93%|█████████▎| 26/28 [00:07<00:00, 3.54it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.54it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.54it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.58it/s]", "metrics": { "predict_time": 18.524824246, "total_time": 18.532563 }, "output": [ "https://replicate.delivery/yhqm/T49uBPQNiWYDMt0hUEIu4fKjAusYDNw9nXkMEtnpnfu9wf4mA/out-0.webp" ], "started_at": "2024-09-13T14:20:26.570739Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/ttfvh7dp8drm00chxf0vt1phvw", "cancel": "https://api.replicate.com/v1/predictions/ttfvh7dp8drm00chxf0vt1phvw/cancel" }, "version": "48ec7052507119a3d8e4ab31299faf1246275e39d4727ab3542c6a38e22ae839" }
Generated inUsing seed: 16152 Prompt: San Francisco bridge in the style of STL [!] txt2img mode Using dev model free=6881752465408 Downloading weights 2024-09-13T14:20:26Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmp_a7uq672/weights url=https://replicate.delivery/yhqm/E000pz6pSZKcKxV3MyPTb57Zf3AJTXeQD199lp2Mms3fL64mA/trained_model.tar 2024-09-13T14:20:28Z | INFO | [ Complete ] dest=/tmp/tmp_a7uq672/weights size="172 MB" total_elapsed=1.639s url=https://replicate.delivery/yhqm/E000pz6pSZKcKxV3MyPTb57Zf3AJTXeQD199lp2Mms3fL64mA/trained_model.tar Downloaded weights in 1.67s Loaded LoRAs in 10.37s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.56it/s] 7%|▋ | 2/28 [00:00<00:06, 4.03it/s] 11%|█ | 3/28 [00:00<00:06, 3.80it/s] 14%|█▍ | 4/28 [00:01<00:06, 3.70it/s] 18%|█▊ | 5/28 [00:01<00:06, 3.65it/s] 21%|██▏ | 6/28 [00:01<00:06, 3.62it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.60it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.58it/s] 32%|███▏ | 9/28 [00:02<00:05, 3.58it/s] 36%|███▌ | 10/28 [00:02<00:05, 3.57it/s] 39%|███▉ | 11/28 [00:03<00:04, 3.57it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.56it/s] 46%|████▋ | 13/28 [00:03<00:04, 3.56it/s] 50%|█████ | 14/28 [00:03<00:03, 3.56it/s] 54%|█████▎ | 15/28 [00:04<00:03, 3.56it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.55it/s] 61%|██████ | 17/28 [00:04<00:03, 3.56it/s] 64%|██████▍ | 18/28 [00:05<00:02, 3.56it/s] 68%|██████▊ | 19/28 [00:05<00:02, 3.56it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.56it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.55it/s] 79%|███████▊ | 22/28 [00:06<00:01, 3.55it/s] 82%|████████▏ | 23/28 [00:06<00:01, 3.55it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.55it/s] 89%|████████▉ | 25/28 [00:06<00:00, 3.56it/s] 93%|█████████▎| 26/28 [00:07<00:00, 3.54it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.54it/s] 100%|██████████| 28/28 [00:07<00:00, 3.54it/s] 100%|██████████| 28/28 [00:07<00:00, 3.58it/s]
Prediction
levelsio/san-andreas:61cdb2f6a8f234ea9ca3cce88d5454f9b951f93619f5f353a331407f4a05a314ID7tznw8cmqnrm20chy4xvh66a5cStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- man posing in front of neighbourhood in the style of STL with a circular road layout at sunset
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 16:9
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "man posing in front of neighbourhood in the style of STL with a circular road layout at sunset", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "16:9", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run levelsio/san-andreas using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "levelsio/san-andreas:61cdb2f6a8f234ea9ca3cce88d5454f9b951f93619f5f353a331407f4a05a314", { input: { model: "dev", prompt: "man posing in front of neighbourhood in the style of STL with a circular road layout at sunset", lora_scale: 1, num_outputs: 1, aspect_ratio: "16:9", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run levelsio/san-andreas using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "levelsio/san-andreas:61cdb2f6a8f234ea9ca3cce88d5454f9b951f93619f5f353a331407f4a05a314", input={ "model": "dev", "prompt": "man posing in front of neighbourhood in the style of STL with a circular road layout at sunset", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "16:9", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run levelsio/san-andreas using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "levelsio/san-andreas:61cdb2f6a8f234ea9ca3cce88d5454f9b951f93619f5f353a331407f4a05a314", "input": { "model": "dev", "prompt": "man posing in front of neighbourhood in the style of STL with a circular road layout at sunset", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "16:9", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-14T15:51:59.762689Z", "created_at": "2024-09-14T15:51:39.453000Z", "data_removed": false, "error": null, "id": "7tznw8cmqnrm20chy4xvh66a5c", "input": { "model": "dev", "prompt": "man posing in front of neighbourhood in the style of STL with a circular road layout at sunset", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "16:9", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 65281\nPrompt: man posing in front of neighbourhood in the style of STL with a circular road layout at sunset\n[!] txt2img mode\nUsing dev model\nfree=7381671841792\nDownloading weights\n2024-09-14T15:51:39Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpxezi2aaf/weights url=https://replicate.delivery/yhqm/EUjFpsIS93ahDR7oSQ2yxAZgdUsa4MZ4W7ex1L3b2fXb4mcTA/trained_model.tar\n2024-09-14T15:51:43Z | INFO | [ Complete ] dest=/tmp/tmpxezi2aaf/weights size=\"172 MB\" total_elapsed=3.243s url=https://replicate.delivery/yhqm/EUjFpsIS93ahDR7oSQ2yxAZgdUsa4MZ4W7ex1L3b2fXb4mcTA/trained_model.tar\nDownloaded weights in 3.34s\nLoaded LoRAs in 11.86s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.54it/s]\n 7%|▋ | 2/28 [00:00<00:06, 4.01it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.79it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.69it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.63it/s]\n 21%|██▏ | 6/28 [00:01<00:06, 3.60it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.58it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.57it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.56it/s]\n 36%|███▌ | 10/28 [00:02<00:05, 3.56it/s]\n 39%|███▉ | 11/28 [00:03<00:04, 3.55it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.55it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.55it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.55it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.55it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.55it/s]\n 61%|██████ | 17/28 [00:04<00:03, 3.54it/s]\n 64%|██████▍ | 18/28 [00:05<00:02, 3.54it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.54it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.54it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.54it/s]\n 79%|███████▊ | 22/28 [00:06<00:01, 3.54it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.54it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.54it/s]\n 89%|████████▉ | 25/28 [00:07<00:00, 3.54it/s]\n 93%|█████████▎| 26/28 [00:07<00:00, 3.54it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.54it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.54it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.57it/s]", "metrics": { "predict_time": 20.037383925, "total_time": 20.309689 }, "output": [ "https://replicate.delivery/yhqm/RSfL5oqrZxUYBy23swyH6DbOkfBVV4tlc2qbwREQe8fejxmbC/out-0.webp" ], "started_at": "2024-09-14T15:51:39.725305Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/7tznw8cmqnrm20chy4xvh66a5c", "cancel": "https://api.replicate.com/v1/predictions/7tznw8cmqnrm20chy4xvh66a5c/cancel" }, "version": "61cdb2f6a8f234ea9ca3cce88d5454f9b951f93619f5f353a331407f4a05a314" }
Generated inUsing seed: 65281 Prompt: man posing in front of neighbourhood in the style of STL with a circular road layout at sunset [!] txt2img mode Using dev model free=7381671841792 Downloading weights 2024-09-14T15:51:39Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpxezi2aaf/weights url=https://replicate.delivery/yhqm/EUjFpsIS93ahDR7oSQ2yxAZgdUsa4MZ4W7ex1L3b2fXb4mcTA/trained_model.tar 2024-09-14T15:51:43Z | INFO | [ Complete ] dest=/tmp/tmpxezi2aaf/weights size="172 MB" total_elapsed=3.243s url=https://replicate.delivery/yhqm/EUjFpsIS93ahDR7oSQ2yxAZgdUsa4MZ4W7ex1L3b2fXb4mcTA/trained_model.tar Downloaded weights in 3.34s Loaded LoRAs in 11.86s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.54it/s] 7%|▋ | 2/28 [00:00<00:06, 4.01it/s] 11%|█ | 3/28 [00:00<00:06, 3.79it/s] 14%|█▍ | 4/28 [00:01<00:06, 3.69it/s] 18%|█▊ | 5/28 [00:01<00:06, 3.63it/s] 21%|██▏ | 6/28 [00:01<00:06, 3.60it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.58it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.57it/s] 32%|███▏ | 9/28 [00:02<00:05, 3.56it/s] 36%|███▌ | 10/28 [00:02<00:05, 3.56it/s] 39%|███▉ | 11/28 [00:03<00:04, 3.55it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.55it/s] 46%|████▋ | 13/28 [00:03<00:04, 3.55it/s] 50%|█████ | 14/28 [00:03<00:03, 3.55it/s] 54%|█████▎ | 15/28 [00:04<00:03, 3.55it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.55it/s] 61%|██████ | 17/28 [00:04<00:03, 3.54it/s] 64%|██████▍ | 18/28 [00:05<00:02, 3.54it/s] 68%|██████▊ | 19/28 [00:05<00:02, 3.54it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.54it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.54it/s] 79%|███████▊ | 22/28 [00:06<00:01, 3.54it/s] 82%|████████▏ | 23/28 [00:06<00:01, 3.54it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.54it/s] 89%|████████▉ | 25/28 [00:07<00:00, 3.54it/s] 93%|█████████▎| 26/28 [00:07<00:00, 3.54it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.54it/s] 100%|██████████| 28/28 [00:07<00:00, 3.54it/s] 100%|██████████| 28/28 [00:07<00:00, 3.57it/s]
Want to make some of these yourself?
Run this model