lightweight-ai/q_l_t

Public
7 runs

Run lightweight-ai/q_l_t with an API

Use one of our client libraries to get started quickly. Clicking on a library will take you to the Playground tab where you can tweak different inputs, see the results, and copy the corresponding code to use in your own project.

Input schema

The fields you can use to run this model with an API. If you don't give a value for a field its default value will be used.

Field Type Default value Description
batch_size
None
1
Batch size
optimizer
None
adamw8bit
Optimizer
content_or_style
None
balanced
Content/style weighting
train_dtype
None
bf16
Training dtype
arch
string
qwen_image
Model arch key for ai-toolkit
seed
integer
42
Random seed (None=random)
steps
integer
3000

Min: 100

Max: 6000

Training steps
device
string
cuda
Device for ai-toolkit trainer
dataset
string
ZIP with images and optional .txt captions (same basenames)
ema_use
boolean
False
Use EMA
subject
string
Karina
Subject identifier to bind (e.g., a name)
ema_decay
number
0.99

Max: 0.9999

EMA decay
lora_conv
integer
16

Max: 256

LoRA conv rank
base_model
string
/home/freek/Qwen-Image
Base model path or HF ID
save_every
integer
250

Min: 1

Max: 10000

Checkpoint/sample every N steps
caption_ext
string
txt
Caption file extension
lokr_factor
integer
-1
LoKr factor (-1 = auto)
lora_linear
integer
32

Min: 1

Max: 256

LoRA linear rank
pack_samples
boolean
True
Include generated sample images in ZIP
sample_every
integer
250

Max: 10000

Sample every N steps
sample_steps
integer
25

Min: 1

Max: 200

Sampling steps
sample_width
integer
1024

Min: 64

Max: 2048

Sample width
weight_decay
number
0.0001

Max: 1

Weight decay
learning_rate
number
0.0002

Min: 0.00001

Max: 0.001

Learning rate
sample_height
integer
1024

Min: 64

Max: 2048

Sample height
timestep_type
string
sigmoid
Timestep shaping
guidance_scale
number
4

Max: 20

Guidance scale
lokr_full_rank
boolean
True
Use full-rank LoKr
sqlite_db_path
string
./aitk_db.db
SQLite DB path for trainer
default_caption
string
Default caption for images without .txt (overridden by subject if empty)
lora_conv_alpha
integer
16

Max: 1024

LoRA conv alpha
noise_scheduler
string
flowmatch
Noise scheduler
pack_checkpoints
boolean
True
Include all intermediate .safetensors in ZIP
lora_linear_alpha
integer
32

Min: 1

Max: 1024

LoRA linear alpha
resolution_list_csv
string
512,768,1024
Comma-separated short-side resolutions
caption_dropout_rate
number
0.05

Max: 1

Caption dropout rate
gradient_accumulation
integer
1

Min: 1

Max: 64

Gradient accumulation
gradient_checkpointing
boolean
True
Enable gradient checkpointing
ignore_if_contains_csv
string
Comma-separated module substrings to ignore for LoRA

Output schema

The shape of the response you’ll get when you run this model with an API.

Schema
{
  "type": "object",
  "title": "Output",
  "required": [
    "weights"
  ],
  "properties": {
    "weights": {
      "type": "string",
      "title": "Weights",
      "format": "uri"
    }
  }
}