Readme
This model doesn't have a readme.
(Updated 2 months ago)
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
import fs from "node:fs";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run lightweight-ai/test_sk2ig using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"lightweight-ai/test_sk2ig:0ef99511f3836ec50b98c33661d1cf495bc3e38c3635011ef2ad4310245b967d",
{
input: {
seed: 0,
image: "https://replicate.delivery/pbxt/Mq4t16RmMjs2zkyD0y2gFL7OZBlFvcjSRmoi2HqTyKfJlrzj/aa96dadef832b0af3ecbefea17fc8acc%20%28Copy%29.jpg",
prompt: "rose",
style_name: "3D Model",
hed_enabled: true,
canny_enabled: false,
guidance_scale: 5,
negative_prompt: "ugly, blurry, deformed",
num_inference_steps: 25,
controlnet_conditioning_scale: 0.5
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run lightweight-ai/test_sk2ig using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"lightweight-ai/test_sk2ig:0ef99511f3836ec50b98c33661d1cf495bc3e38c3635011ef2ad4310245b967d",
input={
"seed": 0,
"image": "https://replicate.delivery/pbxt/Mq4t16RmMjs2zkyD0y2gFL7OZBlFvcjSRmoi2HqTyKfJlrzj/aa96dadef832b0af3ecbefea17fc8acc%20%28Copy%29.jpg",
"prompt": "rose",
"style_name": "3D Model",
"hed_enabled": True,
"canny_enabled": False,
"guidance_scale": 5,
"negative_prompt": "ugly, blurry, deformed",
"num_inference_steps": 25,
"controlnet_conditioning_scale": 0.5
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run lightweight-ai/test_sk2ig using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "lightweight-ai/test_sk2ig:0ef99511f3836ec50b98c33661d1cf495bc3e38c3635011ef2ad4310245b967d",
"input": {
"seed": 0,
"image": "https://replicate.delivery/pbxt/Mq4t16RmMjs2zkyD0y2gFL7OZBlFvcjSRmoi2HqTyKfJlrzj/aa96dadef832b0af3ecbefea17fc8acc%20%28Copy%29.jpg",
"prompt": "rose",
"style_name": "3D Model",
"hed_enabled": true,
"canny_enabled": false,
"guidance_scale": 5,
"negative_prompt": "ugly, blurry, deformed",
"num_inference_steps": 25,
"controlnet_conditioning_scale": 0.5
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/lightweight-ai/test_sk2ig@sha256:0ef99511f3836ec50b98c33661d1cf495bc3e38c3635011ef2ad4310245b967d \
-i 'seed=0' \
-i 'image="https://replicate.delivery/pbxt/Mq4t16RmMjs2zkyD0y2gFL7OZBlFvcjSRmoi2HqTyKfJlrzj/aa96dadef832b0af3ecbefea17fc8acc%20%28Copy%29.jpg"' \
-i 'prompt="rose"' \
-i 'style_name="3D Model"' \
-i 'hed_enabled=true' \
-i 'canny_enabled=false' \
-i 'guidance_scale=5' \
-i 'negative_prompt="ugly, blurry, deformed"' \
-i 'num_inference_steps=25' \
-i 'controlnet_conditioning_scale=0.5'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/lightweight-ai/test_sk2ig@sha256:0ef99511f3836ec50b98c33661d1cf495bc3e38c3635011ef2ad4310245b967d
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "seed": 0, "image": "https://replicate.delivery/pbxt/Mq4t16RmMjs2zkyD0y2gFL7OZBlFvcjSRmoi2HqTyKfJlrzj/aa96dadef832b0af3ecbefea17fc8acc%20%28Copy%29.jpg", "prompt": "rose", "style_name": "3D Model", "hed_enabled": true, "canny_enabled": false, "guidance_scale": 5, "negative_prompt": "ugly, blurry, deformed", "num_inference_steps": 25, "controlnet_conditioning_scale": 0.5 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2025-04-15T05:58:03.493255Z",
"created_at": "2025-04-15T05:55:29.084000Z",
"data_removed": false,
"error": null,
"id": "dhz6sztgqhrm80cp7028jy2ahg",
"input": {
"seed": 0,
"image": "https://replicate.delivery/pbxt/Mq4t16RmMjs2zkyD0y2gFL7OZBlFvcjSRmoi2HqTyKfJlrzj/aa96dadef832b0af3ecbefea17fc8acc%20%28Copy%29.jpg",
"prompt": "rose",
"style_name": "3D Model",
"hed_enabled": true,
"canny_enabled": false,
"guidance_scale": 5,
"negative_prompt": "ugly, blurry, deformed",
"num_inference_steps": 25,
"controlnet_conditioning_scale": 0.5
},
"logs": "0%| | 0/25 [00:00<?, ?it/s]\n 4%|▍ | 1/25 [00:00<00:07, 3.11it/s]\n 8%|▊ | 2/25 [00:00<00:04, 5.02it/s]\n 12%|█▏ | 3/25 [00:00<00:04, 5.33it/s]\n 16%|█▌ | 4/25 [00:00<00:03, 5.48it/s]\n 20%|██ | 5/25 [00:00<00:03, 5.57it/s]\n 24%|██▍ | 6/25 [00:01<00:03, 5.62it/s]\n 28%|██▊ | 7/25 [00:01<00:03, 5.65it/s]\n 32%|███▏ | 8/25 [00:01<00:02, 5.68it/s]\n 36%|███▌ | 9/25 [00:01<00:02, 5.70it/s]\n 40%|████ | 10/25 [00:01<00:02, 5.70it/s]\n 44%|████▍ | 11/25 [00:02<00:02, 5.71it/s]\n 48%|████▊ | 12/25 [00:02<00:02, 5.71it/s]\n 52%|█████▏ | 13/25 [00:02<00:02, 5.71it/s]\n 56%|█████▌ | 14/25 [00:02<00:01, 5.71it/s]\n 60%|██████ | 15/25 [00:02<00:01, 5.71it/s]\n 64%|██████▍ | 16/25 [00:02<00:01, 5.70it/s]\n 68%|██████▊ | 17/25 [00:03<00:01, 5.70it/s]\n 72%|███████▏ | 18/25 [00:03<00:01, 5.70it/s]\n 76%|███████▌ | 19/25 [00:03<00:01, 5.70it/s]\n 80%|████████ | 20/25 [00:03<00:00, 5.70it/s]\n 84%|████████▍ | 21/25 [00:03<00:00, 5.70it/s]\n 88%|████████▊ | 22/25 [00:03<00:00, 5.70it/s]\n 92%|█████████▏| 23/25 [00:04<00:00, 5.70it/s]\n 96%|█████████▌| 24/25 [00:04<00:00, 5.69it/s]\n100%|██████████| 25/25 [00:04<00:00, 5.68it/s]\n100%|██████████| 25/25 [00:04<00:00, 5.60it/s]\n출력 이미지가 /tmp/outpaint_output.png에 저장되었습니다.",
"metrics": {
"predict_time": 6.049118312,
"total_time": 154.409255
},
"output": [
"https://replicate.delivery/xezq/QeAp5DKcSOU8QCJnecgXzCGzhca0hoW8mikGcYWcJ98rd6iUA/outpaint_output.png"
],
"started_at": "2025-04-15T05:57:57.444137Z",
"status": "succeeded",
"urls": {
"stream": "https://stream.replicate.com/v1/files/bcwr-t7f6wty2uetcmotro54xyu55ab23z7au6mxgpv2levkqjf3od7ra",
"get": "https://api.replicate.com/v1/predictions/dhz6sztgqhrm80cp7028jy2ahg",
"cancel": "https://api.replicate.com/v1/predictions/dhz6sztgqhrm80cp7028jy2ahg/cancel"
},
"version": "0ef99511f3836ec50b98c33661d1cf495bc3e38c3635011ef2ad4310245b967d"
}
0%| | 0/25 [00:00<?, ?it/s]
4%|▍ | 1/25 [00:00<00:07, 3.11it/s]
8%|▊ | 2/25 [00:00<00:04, 5.02it/s]
12%|█▏ | 3/25 [00:00<00:04, 5.33it/s]
16%|█▌ | 4/25 [00:00<00:03, 5.48it/s]
20%|██ | 5/25 [00:00<00:03, 5.57it/s]
24%|██▍ | 6/25 [00:01<00:03, 5.62it/s]
28%|██▊ | 7/25 [00:01<00:03, 5.65it/s]
32%|███▏ | 8/25 [00:01<00:02, 5.68it/s]
36%|███▌ | 9/25 [00:01<00:02, 5.70it/s]
40%|████ | 10/25 [00:01<00:02, 5.70it/s]
44%|████▍ | 11/25 [00:02<00:02, 5.71it/s]
48%|████▊ | 12/25 [00:02<00:02, 5.71it/s]
52%|█████▏ | 13/25 [00:02<00:02, 5.71it/s]
56%|█████▌ | 14/25 [00:02<00:01, 5.71it/s]
60%|██████ | 15/25 [00:02<00:01, 5.71it/s]
64%|██████▍ | 16/25 [00:02<00:01, 5.70it/s]
68%|██████▊ | 17/25 [00:03<00:01, 5.70it/s]
72%|███████▏ | 18/25 [00:03<00:01, 5.70it/s]
76%|███████▌ | 19/25 [00:03<00:01, 5.70it/s]
80%|████████ | 20/25 [00:03<00:00, 5.70it/s]
84%|████████▍ | 21/25 [00:03<00:00, 5.70it/s]
88%|████████▊ | 22/25 [00:03<00:00, 5.70it/s]
92%|█████████▏| 23/25 [00:04<00:00, 5.70it/s]
96%|█████████▌| 24/25 [00:04<00:00, 5.69it/s]
100%|██████████| 25/25 [00:04<00:00, 5.68it/s]
100%|██████████| 25/25 [00:04<00:00, 5.60it/s]
출력 이미지가 /tmp/outpaint_output.png에 저장되었습니다.
This model runs on Nvidia L40S GPU hardware. We don't yet have enough runs of this model to provide performance information.
This model doesn't have a readme.
This model is cold. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
This model runs on L40S hardware which costs $0.000975 per second. View more.
Choose a file from your machine
Hint: you can also drag files onto the input
0%| | 0/25 [00:00<?, ?it/s]
4%|▍ | 1/25 [00:00<00:07, 3.11it/s]
8%|▊ | 2/25 [00:00<00:04, 5.02it/s]
12%|█▏ | 3/25 [00:00<00:04, 5.33it/s]
16%|█▌ | 4/25 [00:00<00:03, 5.48it/s]
20%|██ | 5/25 [00:00<00:03, 5.57it/s]
24%|██▍ | 6/25 [00:01<00:03, 5.62it/s]
28%|██▊ | 7/25 [00:01<00:03, 5.65it/s]
32%|███▏ | 8/25 [00:01<00:02, 5.68it/s]
36%|███▌ | 9/25 [00:01<00:02, 5.70it/s]
40%|████ | 10/25 [00:01<00:02, 5.70it/s]
44%|████▍ | 11/25 [00:02<00:02, 5.71it/s]
48%|████▊ | 12/25 [00:02<00:02, 5.71it/s]
52%|█████▏ | 13/25 [00:02<00:02, 5.71it/s]
56%|█████▌ | 14/25 [00:02<00:01, 5.71it/s]
60%|██████ | 15/25 [00:02<00:01, 5.71it/s]
64%|██████▍ | 16/25 [00:02<00:01, 5.70it/s]
68%|██████▊ | 17/25 [00:03<00:01, 5.70it/s]
72%|███████▏ | 18/25 [00:03<00:01, 5.70it/s]
76%|███████▌ | 19/25 [00:03<00:01, 5.70it/s]
80%|████████ | 20/25 [00:03<00:00, 5.70it/s]
84%|████████▍ | 21/25 [00:03<00:00, 5.70it/s]
88%|████████▊ | 22/25 [00:03<00:00, 5.70it/s]
92%|█████████▏| 23/25 [00:04<00:00, 5.70it/s]
96%|█████████▌| 24/25 [00:04<00:00, 5.69it/s]
100%|██████████| 25/25 [00:04<00:00, 5.68it/s]
100%|██████████| 25/25 [00:04<00:00, 5.60it/s]
출력 이미지가 /tmp/outpaint_output.png에 저장되었습니다.