lightweight-ai/z-l-t-1

Public
5 runs

Run lightweight-ai/z-l-t-1 with an API

Use one of our client libraries to get started quickly. Clicking on a library will take you to the Playground tab where you can tweak different inputs, see the results, and copy the corresponding code to use in your own project.

Input schema

The fields you can use to run this model with an API. If you don't give a value for a field its default value will be used.

Field Type Default value Description
lr
number
0.0001
train.lr
conv
integer
-1
network.conv override (-1이면 템플릿 유지)
name
string
cfg.config.name
seed
integer
0
sample.seed (0이면 무시)
steps
integer
3000
train.steps
linear
integer
-1
network.linear override (-1이면 템플릿 유지)
prompts
string
샘플 프롬프트들. 줄바꿈으로 여러 개 입력 가능. 비우면 템플릿 값 사용
quantize
boolean
True
model.quantize override
batch_size
integer
1
train.batch_size
conv_alpha
integer
-1
network.conv_alpha override (-1이면 템플릿 유지)
resolution
string
예: '1024,1280,1536' 형태. 비우면 템플릿 값 사용
dataset_zip
string
학습 이미지 zip (선택). 제공하면 dataset_folder로 안전 추출합니다.
quantize_te
boolean
True
model.quantize_te override
linear_alpha
integer
-1
network.linear_alpha override (-1이면 템플릿 유지)
sample_every
integer
0
sample.sample_every (0이면 무시)
sample_steps
integer
0
sample.sample_steps (0이면 무시)
sample_width
integer
0
sample.width (0이면 무시)
trigger_word
string
parkboyoung2
trigger word (caption 기본값)
output_subdir
string
output 하위 폴더명
sample_height
integer
0
sample.height (0이면 무시)
dataset_folder
string
datasets 폴더 내 서브폴더명 또는 절대경로. 비우면 DEFAULT_DATASET_FOLDER 사용
dataset_images
array
[]
학습 이미지 파일들(여러 개 업로드 가능). zip 대신 사용 가능
guidance_scale
number
-1
sample.guidance_scale (-1이면 무시)
clear_dataset_dir
boolean
False
dataset_zip/dataset_images를 넣기 전에 기존 dataset_folder를 비울지 여부
model_name_or_path
string
Tongyi-MAI/Z-Image-Turbo
model.name_or_path override
gradient_accumulation
integer
1
train.gradient_accumulation

Output schema

The shape of the response you’ll get when you run this model with an API.

Schema
{
  "type": "string",
  "title": "Output",
  "format": "uri"
}