Failed to load versions. Head to the versions page to see all versions for this model.
You're looking at a specific version of this model. Jump to the model overview.
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
import fs from "node:fs";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run lucataco/sdxl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"lucataco/sdxl:c86579ac5193bf45422f1c8b92742135aa859b1850a8e4c531bff222fc75273d",
{
input: {
seed: 39287,
width: 1024,
height: 1024,
prompt: "a studio portrait photo of an iguana wearing a hat",
refine: "expert_ensemble_refiner",
scheduler: "DDIM",
lora_scale: 0.6,
num_outputs: 1,
guidance_scale: 7.5,
apply_watermark: true,
high_noise_frac: 0.8,
negative_prompt: "",
prompt_strength: 0.8,
num_inference_steps: 25
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run lucataco/sdxl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"lucataco/sdxl:c86579ac5193bf45422f1c8b92742135aa859b1850a8e4c531bff222fc75273d",
input={
"seed": 39287,
"width": 1024,
"height": 1024,
"prompt": "a studio portrait photo of an iguana wearing a hat",
"refine": "expert_ensemble_refiner",
"scheduler": "DDIM",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": True,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 25
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run lucataco/sdxl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "lucataco/sdxl:c86579ac5193bf45422f1c8b92742135aa859b1850a8e4c531bff222fc75273d",
"input": {
"seed": 39287,
"width": 1024,
"height": 1024,
"prompt": "a studio portrait photo of an iguana wearing a hat",
"refine": "expert_ensemble_refiner",
"scheduler": "DDIM",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 25
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2024-12-06T21:11:57.143658Z",
"created_at": "2024-12-06T21:11:53.526000Z",
"data_removed": false,
"error": null,
"id": "4q90w8cqpsrme0ckkq88t6023m",
"input": {
"seed": 39287,
"width": 1024,
"height": 1024,
"prompt": "a studio portrait photo of an iguana wearing a hat",
"refine": "expert_ensemble_refiner",
"scheduler": "DDIM",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 25
},
"logs": "Using seed: 39287\nPrompt: a studio portrait photo of an iguana wearing a hat\ntxt2img mode\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:00<00:02, 9.39it/s]\n 10%|█ | 2/20 [00:00<00:01, 9.18it/s]\n 15%|█▌ | 3/20 [00:00<00:01, 9.12it/s]\n 20%|██ | 4/20 [00:00<00:01, 9.09it/s]\n 25%|██▌ | 5/20 [00:00<00:01, 9.08it/s]\n 30%|███ | 6/20 [00:00<00:01, 9.05it/s]\n 35%|███▌ | 7/20 [00:00<00:01, 9.07it/s]\n 40%|████ | 8/20 [00:00<00:01, 9.03it/s]\n 45%|████▌ | 9/20 [00:00<00:01, 9.04it/s]\n 50%|█████ | 10/20 [00:01<00:01, 9.03it/s]\n 55%|█████▌ | 11/20 [00:01<00:00, 9.02it/s]\n 60%|██████ | 12/20 [00:01<00:00, 9.02it/s]\n 65%|██████▌ | 13/20 [00:01<00:00, 9.01it/s]\n 70%|███████ | 14/20 [00:01<00:00, 9.01it/s]\n 75%|███████▌ | 15/20 [00:01<00:00, 9.00it/s]\n 80%|████████ | 16/20 [00:01<00:00, 9.01it/s]\n 85%|████████▌ | 17/20 [00:01<00:00, 9.01it/s]\n 90%|█████████ | 18/20 [00:01<00:00, 9.01it/s]\n 95%|█████████▌| 19/20 [00:02<00:00, 9.00it/s]\n100%|██████████| 20/20 [00:02<00:00, 9.00it/s]\n100%|██████████| 20/20 [00:02<00:00, 9.03it/s]\n 0%| | 0/5 [00:00<?, ?it/s]\n 20%|██ | 1/5 [00:00<00:00, 8.61it/s]\n 40%|████ | 2/5 [00:00<00:00, 8.40it/s]\n 60%|██████ | 3/5 [00:00<00:00, 8.36it/s]\n 80%|████████ | 4/5 [00:00<00:00, 8.33it/s]\n100%|██████████| 5/5 [00:00<00:00, 8.32it/s]\n100%|██████████| 5/5 [00:00<00:00, 8.35it/s]",
"metrics": {
"predict_time": 3.609316057,
"total_time": 3.617658
},
"output": [
"https://replicate.delivery/xezq/blqwOdw3lOrYN9edH14RaE1wl2uZgEZkcNAFdnDO099O1I8JA/out-0.png"
],
"started_at": "2024-12-06T21:11:53.534342Z",
"status": "succeeded",
"urls": {
"stream": "https://stream.replicate.com/v1/files/bcwr-gjbs4ohqn5mlazlimuycfnaifps77gscakfh2y47cfgryugixdsq",
"get": "https://api.replicate.com/v1/predictions/4q90w8cqpsrme0ckkq88t6023m",
"cancel": "https://api.replicate.com/v1/predictions/4q90w8cqpsrme0ckkq88t6023m/cancel"
},
"version": "c86579ac5193bf45422f1c8b92742135aa859b1850a8e4c531bff222fc75273d"
}
Using seed: 39287
Prompt: a studio portrait photo of an iguana wearing a hat
txt2img mode
0%| | 0/20 [00:00<?, ?it/s]
5%|▌ | 1/20 [00:00<00:02, 9.39it/s]
10%|█ | 2/20 [00:00<00:01, 9.18it/s]
15%|█▌ | 3/20 [00:00<00:01, 9.12it/s]
20%|██ | 4/20 [00:00<00:01, 9.09it/s]
25%|██▌ | 5/20 [00:00<00:01, 9.08it/s]
30%|███ | 6/20 [00:00<00:01, 9.05it/s]
35%|███▌ | 7/20 [00:00<00:01, 9.07it/s]
40%|████ | 8/20 [00:00<00:01, 9.03it/s]
45%|████▌ | 9/20 [00:00<00:01, 9.04it/s]
50%|█████ | 10/20 [00:01<00:01, 9.03it/s]
55%|█████▌ | 11/20 [00:01<00:00, 9.02it/s]
60%|██████ | 12/20 [00:01<00:00, 9.02it/s]
65%|██████▌ | 13/20 [00:01<00:00, 9.01it/s]
70%|███████ | 14/20 [00:01<00:00, 9.01it/s]
75%|███████▌ | 15/20 [00:01<00:00, 9.00it/s]
80%|████████ | 16/20 [00:01<00:00, 9.01it/s]
85%|████████▌ | 17/20 [00:01<00:00, 9.01it/s]
90%|█████████ | 18/20 [00:01<00:00, 9.01it/s]
95%|█████████▌| 19/20 [00:02<00:00, 9.00it/s]
100%|██████████| 20/20 [00:02<00:00, 9.00it/s]
100%|██████████| 20/20 [00:02<00:00, 9.03it/s]
0%| | 0/5 [00:00<?, ?it/s]
20%|██ | 1/5 [00:00<00:00, 8.61it/s]
40%|████ | 2/5 [00:00<00:00, 8.40it/s]
60%|██████ | 3/5 [00:00<00:00, 8.36it/s]
80%|████████ | 4/5 [00:00<00:00, 8.33it/s]
100%|██████████| 5/5 [00:00<00:00, 8.32it/s]
100%|██████████| 5/5 [00:00<00:00, 8.35it/s]