Failed to load versions. Head to the versions page to see all versions for this model.
You're looking at a specific version of this model. Jump to the model overview.
lucataco /thinkdiffusionxl:c41c1275
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
import fs from "node:fs";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run lucataco/thinkdiffusionxl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"lucataco/thinkdiffusionxl:c41c12756b561bc81047a9307c9143589d158ef084655dbb3073b4f08ff54f32",
{
input: {
seed: 403,
width: 1024,
height: 1024,
prompt: "cinematic film still dramatic side lighting, dramatic intense stare closeup portrait, dark black background, hdr, dramatic beautiful warrior woman with warrior face paintings and blood, viking braids, blue eyes, pelt, skull necklace, shallow depth of field, vignette, highly detailed, high budget Hollywood film, cinemascope, moody, epic, gorgeous",
scheduler: "DPMSolverMultistep",
num_outputs: 1,
nsfw_checker: true,
guidance_scale: 6,
negative_prompt: "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, blur, bokeh",
num_inference_steps: 30
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run lucataco/thinkdiffusionxl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"lucataco/thinkdiffusionxl:c41c12756b561bc81047a9307c9143589d158ef084655dbb3073b4f08ff54f32",
input={
"seed": 403,
"width": 1024,
"height": 1024,
"prompt": "cinematic film still dramatic side lighting, dramatic intense stare closeup portrait, dark black background, hdr, dramatic beautiful warrior woman with warrior face paintings and blood, viking braids, blue eyes, pelt, skull necklace, shallow depth of field, vignette, highly detailed, high budget Hollywood film, cinemascope, moody, epic, gorgeous",
"scheduler": "DPMSolverMultistep",
"num_outputs": 1,
"nsfw_checker": True,
"guidance_scale": 6,
"negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, blur, bokeh",
"num_inference_steps": 30
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run lucataco/thinkdiffusionxl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "lucataco/thinkdiffusionxl:c41c12756b561bc81047a9307c9143589d158ef084655dbb3073b4f08ff54f32",
"input": {
"seed": 403,
"width": 1024,
"height": 1024,
"prompt": "cinematic film still dramatic side lighting, dramatic intense stare closeup portrait, dark black background, hdr, dramatic beautiful warrior woman with warrior face paintings and blood, viking braids, blue eyes, pelt, skull necklace, shallow depth of field, vignette, highly detailed, high budget Hollywood film, cinemascope, moody, epic, gorgeous",
"scheduler": "DPMSolverMultistep",
"num_outputs": 1,
"nsfw_checker": true,
"guidance_scale": 6,
"negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, blur, bokeh",
"num_inference_steps": 30
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2023-11-06T23:25:54.366426Z",
"created_at": "2023-11-06T23:25:46.334249Z",
"data_removed": false,
"error": null,
"id": "fezk7clbhkwinigd5exfp7mr2q",
"input": {
"seed": 403,
"width": 1024,
"height": 1024,
"prompt": "cinematic film still dramatic side lighting, dramatic intense stare closeup portrait, dark black background, hdr, dramatic beautiful warrior woman with warrior face paintings and blood, viking braids, blue eyes, pelt, skull necklace, shallow depth of field, vignette, highly detailed, high budget Hollywood film, cinemascope, moody, epic, gorgeous",
"scheduler": "DPMSolverMultistep",
"num_outputs": 1,
"nsfw_checker": true,
"guidance_scale": 6,
"negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, blur, bokeh",
"num_inference_steps": 30
},
"logs": "Using seed: 403\n 0%| | 0/30 [00:00<?, ?it/s]\n 3%|▎ | 1/30 [00:00<00:05, 4.96it/s]\n 10%|█ | 3/30 [00:00<00:04, 6.18it/s]\n 13%|█▎ | 4/30 [00:00<00:04, 5.70it/s]\n 17%|█▋ | 5/30 [00:00<00:04, 5.44it/s]\n 20%|██ | 6/30 [00:01<00:04, 5.25it/s]\n 23%|██▎ | 7/30 [00:01<00:04, 5.15it/s]\n 27%|██▋ | 8/30 [00:01<00:04, 5.08it/s]\n 30%|███ | 9/30 [00:01<00:04, 5.04it/s]\n 33%|███▎ | 10/30 [00:01<00:03, 5.01it/s]\n 37%|███▋ | 11/30 [00:02<00:03, 4.98it/s]\n 40%|████ | 12/30 [00:02<00:03, 4.96it/s]\n 43%|████▎ | 13/30 [00:02<00:03, 4.95it/s]\n 47%|████▋ | 14/30 [00:02<00:03, 4.95it/s]\n 50%|█████ | 15/30 [00:02<00:03, 4.94it/s]\n 53%|█████▎ | 16/30 [00:03<00:02, 4.93it/s]\n 57%|█████▋ | 17/30 [00:03<00:02, 4.93it/s]\n 60%|██████ | 18/30 [00:03<00:02, 4.92it/s]\n 63%|██████▎ | 19/30 [00:03<00:02, 4.92it/s]\n 67%|██████▋ | 20/30 [00:03<00:02, 4.92it/s]\n 70%|███████ | 21/30 [00:04<00:01, 4.92it/s]\n 73%|███████▎ | 22/30 [00:04<00:01, 4.91it/s]\n 77%|███████▋ | 23/30 [00:04<00:01, 4.91it/s]\n 80%|████████ | 24/30 [00:04<00:01, 4.92it/s]\n 83%|████████▎ | 25/30 [00:04<00:01, 4.92it/s]\n 87%|████████▋ | 26/30 [00:05<00:00, 4.92it/s]\n 90%|█████████ | 27/30 [00:05<00:00, 4.91it/s]\n 93%|█████████▎| 28/30 [00:05<00:00, 4.91it/s]\n 97%|█████████▋| 29/30 [00:05<00:00, 4.91it/s]\n100%|██████████| 30/30 [00:05<00:00, 4.91it/s]\n100%|██████████| 30/30 [00:05<00:00, 5.02it/s]",
"metrics": {
"predict_time": 8.061587,
"total_time": 8.032177
},
"output": [
"https://replicate.delivery/pbxt/mfzcQjPBtjUCMaIKko5AqlwS6DL4VRB8DqBUq1fc8q8Bgy1RA/out-0.png"
],
"started_at": "2023-11-06T23:25:46.304839Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/fezk7clbhkwinigd5exfp7mr2q",
"cancel": "https://api.replicate.com/v1/predictions/fezk7clbhkwinigd5exfp7mr2q/cancel"
},
"version": "c41c12756b561bc81047a9307c9143589d158ef084655dbb3073b4f08ff54f32"
}
Using seed: 403
0%| | 0/30 [00:00<?, ?it/s]
3%|▎ | 1/30 [00:00<00:05, 4.96it/s]
10%|█ | 3/30 [00:00<00:04, 6.18it/s]
13%|█▎ | 4/30 [00:00<00:04, 5.70it/s]
17%|█▋ | 5/30 [00:00<00:04, 5.44it/s]
20%|██ | 6/30 [00:01<00:04, 5.25it/s]
23%|██▎ | 7/30 [00:01<00:04, 5.15it/s]
27%|██▋ | 8/30 [00:01<00:04, 5.08it/s]
30%|███ | 9/30 [00:01<00:04, 5.04it/s]
33%|███▎ | 10/30 [00:01<00:03, 5.01it/s]
37%|███▋ | 11/30 [00:02<00:03, 4.98it/s]
40%|████ | 12/30 [00:02<00:03, 4.96it/s]
43%|████▎ | 13/30 [00:02<00:03, 4.95it/s]
47%|████▋ | 14/30 [00:02<00:03, 4.95it/s]
50%|█████ | 15/30 [00:02<00:03, 4.94it/s]
53%|█████▎ | 16/30 [00:03<00:02, 4.93it/s]
57%|█████▋ | 17/30 [00:03<00:02, 4.93it/s]
60%|██████ | 18/30 [00:03<00:02, 4.92it/s]
63%|██████▎ | 19/30 [00:03<00:02, 4.92it/s]
67%|██████▋ | 20/30 [00:03<00:02, 4.92it/s]
70%|███████ | 21/30 [00:04<00:01, 4.92it/s]
73%|███████▎ | 22/30 [00:04<00:01, 4.91it/s]
77%|███████▋ | 23/30 [00:04<00:01, 4.91it/s]
80%|████████ | 24/30 [00:04<00:01, 4.92it/s]
83%|████████▎ | 25/30 [00:04<00:01, 4.92it/s]
87%|████████▋ | 26/30 [00:05<00:00, 4.92it/s]
90%|█████████ | 27/30 [00:05<00:00, 4.91it/s]
93%|█████████▎| 28/30 [00:05<00:00, 4.91it/s]
97%|█████████▋| 29/30 [00:05<00:00, 4.91it/s]
100%|██████████| 30/30 [00:05<00:00, 4.91it/s]
100%|██████████| 30/30 [00:05<00:00, 5.02it/s]