Readme
This model doesn't have a readme.
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run ludocomito/flux-kuji using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"ludocomito/flux-kuji:5001e4db8ed2bce55e46f4323c8735bf571a66223a2be97d082c029852b2e036",
{
input: {
model: "dev",
prompt: "sunny beach in the style of KUJI",
go_fast: false,
lora_scale: 1,
megapixels: "1",
num_outputs: 1,
aspect_ratio: "1:1",
output_format: "webp",
guidance_scale: 3.5,
output_quality: 80,
prompt_strength: 0.8,
extra_lora_scale: 0.8,
num_inference_steps: 42
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run ludocomito/flux-kuji using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"ludocomito/flux-kuji:5001e4db8ed2bce55e46f4323c8735bf571a66223a2be97d082c029852b2e036",
input={
"model": "dev",
"prompt": "sunny beach in the style of KUJI",
"go_fast": False,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 0.8,
"num_inference_steps": 42
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run ludocomito/flux-kuji using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "5001e4db8ed2bce55e46f4323c8735bf571a66223a2be97d082c029852b2e036",
"input": {
"model": "dev",
"prompt": "sunny beach in the style of KUJI",
"go_fast": false,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 0.8,
"num_inference_steps": 42
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/ludocomito/flux-kuji@sha256:5001e4db8ed2bce55e46f4323c8735bf571a66223a2be97d082c029852b2e036 \
-i 'model="dev"' \
-i 'prompt="sunny beach in the style of KUJI"' \
-i 'go_fast=false' \
-i 'lora_scale=1' \
-i 'megapixels="1"' \
-i 'num_outputs=1' \
-i 'aspect_ratio="1:1"' \
-i 'output_format="webp"' \
-i 'guidance_scale=3.5' \
-i 'output_quality=80' \
-i 'prompt_strength=0.8' \
-i 'extra_lora_scale=0.8' \
-i 'num_inference_steps=42'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/ludocomito/flux-kuji@sha256:5001e4db8ed2bce55e46f4323c8735bf571a66223a2be97d082c029852b2e036
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "model": "dev", "prompt": "sunny beach in the style of KUJI", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 0.8, "num_inference_steps": 42 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2024-08-26T20:21:15.085923Z",
"created_at": "2024-08-26T20:20:47.944000Z",
"data_removed": false,
"error": null,
"id": "qyvp8dh8s1rm00chj1cszat6hc",
"input": {
"model": "dev",
"prompt": "sunny beach in the style of KUJI",
"lora_scale": 1,
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 80,
"extra_lora_scale": 0.8,
"num_inference_steps": 42
},
"logs": "Using seed: 9545\nPrompt: sunny beach in the style of KUJI\ntxt2img mode\nUsing dev model\nfree=9530279374848\nDownloading weights\n2024-08-26T20:20:49Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpdjcmfqfx/weights url=https://replicate.delivery/yhqm/kT1XobqVJKblIl6YnYiTHMf6zti7TepRVf0KG1GbLk23pStmA/trained_model.tar\n2024-08-26T20:20:53Z | INFO | [ Complete ] dest=/tmp/tmpdjcmfqfx/weights size=\"172 MB\" total_elapsed=3.468s url=https://replicate.delivery/yhqm/kT1XobqVJKblIl6YnYiTHMf6zti7TepRVf0KG1GbLk23pStmA/trained_model.tar\nDownloaded weights in 3.50s\nLoaded LoRAs in 13.42s\n 0%| | 0/42 [00:00<?, ?it/s]\n 2%|▏ | 1/42 [00:00<00:11, 3.70it/s]\n 5%|▍ | 2/42 [00:00<00:09, 4.25it/s]\n 7%|▋ | 3/42 [00:00<00:09, 3.97it/s]\n 10%|▉ | 4/42 [00:01<00:09, 3.85it/s]\n 12%|█▏ | 5/42 [00:01<00:09, 3.79it/s]\n 14%|█▍ | 6/42 [00:01<00:09, 3.76it/s]\n 17%|█▋ | 7/42 [00:01<00:09, 3.73it/s]\n 19%|█▉ | 8/42 [00:02<00:09, 3.72it/s]\n 21%|██▏ | 9/42 [00:02<00:08, 3.71it/s]\n 24%|██▍ | 10/42 [00:02<00:08, 3.70it/s]\n 26%|██▌ | 11/42 [00:02<00:08, 3.69it/s]\n 29%|██▊ | 12/42 [00:03<00:08, 3.69it/s]\n 31%|███ | 13/42 [00:03<00:07, 3.69it/s]\n 33%|███▎ | 14/42 [00:03<00:07, 3.69it/s]\n 36%|███▌ | 15/42 [00:04<00:07, 3.69it/s]\n 38%|███▊ | 16/42 [00:04<00:07, 3.69it/s]\n 40%|████ | 17/42 [00:04<00:06, 3.69it/s]\n 43%|████▎ | 18/42 [00:04<00:06, 3.69it/s]\n 45%|████▌ | 19/42 [00:05<00:06, 3.68it/s]\n 48%|████▊ | 20/42 [00:05<00:05, 3.68it/s]\n 50%|█████ | 21/42 [00:05<00:05, 3.68it/s]\n 52%|█████▏ | 22/42 [00:05<00:05, 3.68it/s]\n 55%|█████▍ | 23/42 [00:06<00:05, 3.68it/s]\n 57%|█████▋ | 24/42 [00:06<00:04, 3.68it/s]\n 60%|█████▉ | 25/42 [00:06<00:04, 3.69it/s]\n 62%|██████▏ | 26/42 [00:06<00:04, 3.69it/s]\n 64%|██████▍ | 27/42 [00:07<00:04, 3.68it/s]\n 67%|██████▋ | 28/42 [00:07<00:03, 3.68it/s]\n 69%|██████▉ | 29/42 [00:07<00:03, 3.69it/s]\n 71%|███████▏ | 30/42 [00:08<00:03, 3.68it/s]\n 74%|███████▍ | 31/42 [00:08<00:02, 3.68it/s]\n 76%|███████▌ | 32/42 [00:08<00:02, 3.68it/s]\n 79%|███████▊ | 33/42 [00:08<00:02, 3.69it/s]\n 81%|████████ | 34/42 [00:09<00:02, 3.69it/s]\n 83%|████████▎ | 35/42 [00:09<00:01, 3.68it/s]\n 86%|████████▌ | 36/42 [00:09<00:01, 3.68it/s]\n 88%|████████▊ | 37/42 [00:09<00:01, 3.69it/s]\n 90%|█████████ | 38/42 [00:10<00:01, 3.69it/s]\n 93%|█████████▎| 39/42 [00:10<00:00, 3.68it/s]\n 95%|█████████▌| 40/42 [00:10<00:00, 3.68it/s]\n 98%|█████████▊| 41/42 [00:11<00:00, 3.68it/s]\n100%|██████████| 42/42 [00:11<00:00, 3.68it/s]\n100%|██████████| 42/42 [00:11<00:00, 3.70it/s]",
"metrics": {
"predict_time": 25.329081845,
"total_time": 27.141923
},
"output": [
"https://replicate.delivery/yhqm/iMbpFxwoKXptIhqWGGVNmKQwuSmHMyu7YKXzly5GNYsuVq1E/out-0.webp"
],
"started_at": "2024-08-26T20:20:49.756841Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/qyvp8dh8s1rm00chj1cszat6hc",
"cancel": "https://api.replicate.com/v1/predictions/qyvp8dh8s1rm00chj1cszat6hc/cancel"
},
"version": "5001e4db8ed2bce55e46f4323c8735bf571a66223a2be97d082c029852b2e036"
}
Using seed: 9545
Prompt: sunny beach in the style of KUJI
txt2img mode
Using dev model
free=9530279374848
Downloading weights
2024-08-26T20:20:49Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpdjcmfqfx/weights url=https://replicate.delivery/yhqm/kT1XobqVJKblIl6YnYiTHMf6zti7TepRVf0KG1GbLk23pStmA/trained_model.tar
2024-08-26T20:20:53Z | INFO | [ Complete ] dest=/tmp/tmpdjcmfqfx/weights size="172 MB" total_elapsed=3.468s url=https://replicate.delivery/yhqm/kT1XobqVJKblIl6YnYiTHMf6zti7TepRVf0KG1GbLk23pStmA/trained_model.tar
Downloaded weights in 3.50s
Loaded LoRAs in 13.42s
0%| | 0/42 [00:00<?, ?it/s]
2%|▏ | 1/42 [00:00<00:11, 3.70it/s]
5%|▍ | 2/42 [00:00<00:09, 4.25it/s]
7%|▋ | 3/42 [00:00<00:09, 3.97it/s]
10%|▉ | 4/42 [00:01<00:09, 3.85it/s]
12%|█▏ | 5/42 [00:01<00:09, 3.79it/s]
14%|█▍ | 6/42 [00:01<00:09, 3.76it/s]
17%|█▋ | 7/42 [00:01<00:09, 3.73it/s]
19%|█▉ | 8/42 [00:02<00:09, 3.72it/s]
21%|██▏ | 9/42 [00:02<00:08, 3.71it/s]
24%|██▍ | 10/42 [00:02<00:08, 3.70it/s]
26%|██▌ | 11/42 [00:02<00:08, 3.69it/s]
29%|██▊ | 12/42 [00:03<00:08, 3.69it/s]
31%|███ | 13/42 [00:03<00:07, 3.69it/s]
33%|███▎ | 14/42 [00:03<00:07, 3.69it/s]
36%|███▌ | 15/42 [00:04<00:07, 3.69it/s]
38%|███▊ | 16/42 [00:04<00:07, 3.69it/s]
40%|████ | 17/42 [00:04<00:06, 3.69it/s]
43%|████▎ | 18/42 [00:04<00:06, 3.69it/s]
45%|████▌ | 19/42 [00:05<00:06, 3.68it/s]
48%|████▊ | 20/42 [00:05<00:05, 3.68it/s]
50%|█████ | 21/42 [00:05<00:05, 3.68it/s]
52%|█████▏ | 22/42 [00:05<00:05, 3.68it/s]
55%|█████▍ | 23/42 [00:06<00:05, 3.68it/s]
57%|█████▋ | 24/42 [00:06<00:04, 3.68it/s]
60%|█████▉ | 25/42 [00:06<00:04, 3.69it/s]
62%|██████▏ | 26/42 [00:06<00:04, 3.69it/s]
64%|██████▍ | 27/42 [00:07<00:04, 3.68it/s]
67%|██████▋ | 28/42 [00:07<00:03, 3.68it/s]
69%|██████▉ | 29/42 [00:07<00:03, 3.69it/s]
71%|███████▏ | 30/42 [00:08<00:03, 3.68it/s]
74%|███████▍ | 31/42 [00:08<00:02, 3.68it/s]
76%|███████▌ | 32/42 [00:08<00:02, 3.68it/s]
79%|███████▊ | 33/42 [00:08<00:02, 3.69it/s]
81%|████████ | 34/42 [00:09<00:02, 3.69it/s]
83%|████████▎ | 35/42 [00:09<00:01, 3.68it/s]
86%|████████▌ | 36/42 [00:09<00:01, 3.68it/s]
88%|████████▊ | 37/42 [00:09<00:01, 3.69it/s]
90%|█████████ | 38/42 [00:10<00:01, 3.69it/s]
93%|█████████▎| 39/42 [00:10<00:00, 3.68it/s]
95%|█████████▌| 40/42 [00:10<00:00, 3.68it/s]
98%|█████████▊| 41/42 [00:11<00:00, 3.68it/s]
100%|██████████| 42/42 [00:11<00:00, 3.68it/s]
100%|██████████| 42/42 [00:11<00:00, 3.70it/s]
This model runs on Nvidia H100 GPU hardware. We don't yet have enough runs of this model to provide performance information.
This model doesn't have a readme.
This model is warm. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
Using seed: 9545
Prompt: sunny beach in the style of KUJI
txt2img mode
Using dev model
free=9530279374848
Downloading weights
2024-08-26T20:20:49Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpdjcmfqfx/weights url=https://replicate.delivery/yhqm/kT1XobqVJKblIl6YnYiTHMf6zti7TepRVf0KG1GbLk23pStmA/trained_model.tar
2024-08-26T20:20:53Z | INFO | [ Complete ] dest=/tmp/tmpdjcmfqfx/weights size="172 MB" total_elapsed=3.468s url=https://replicate.delivery/yhqm/kT1XobqVJKblIl6YnYiTHMf6zti7TepRVf0KG1GbLk23pStmA/trained_model.tar
Downloaded weights in 3.50s
Loaded LoRAs in 13.42s
0%| | 0/42 [00:00<?, ?it/s]
2%|▏ | 1/42 [00:00<00:11, 3.70it/s]
5%|▍ | 2/42 [00:00<00:09, 4.25it/s]
7%|▋ | 3/42 [00:00<00:09, 3.97it/s]
10%|▉ | 4/42 [00:01<00:09, 3.85it/s]
12%|█▏ | 5/42 [00:01<00:09, 3.79it/s]
14%|█▍ | 6/42 [00:01<00:09, 3.76it/s]
17%|█▋ | 7/42 [00:01<00:09, 3.73it/s]
19%|█▉ | 8/42 [00:02<00:09, 3.72it/s]
21%|██▏ | 9/42 [00:02<00:08, 3.71it/s]
24%|██▍ | 10/42 [00:02<00:08, 3.70it/s]
26%|██▌ | 11/42 [00:02<00:08, 3.69it/s]
29%|██▊ | 12/42 [00:03<00:08, 3.69it/s]
31%|███ | 13/42 [00:03<00:07, 3.69it/s]
33%|███▎ | 14/42 [00:03<00:07, 3.69it/s]
36%|███▌ | 15/42 [00:04<00:07, 3.69it/s]
38%|███▊ | 16/42 [00:04<00:07, 3.69it/s]
40%|████ | 17/42 [00:04<00:06, 3.69it/s]
43%|████▎ | 18/42 [00:04<00:06, 3.69it/s]
45%|████▌ | 19/42 [00:05<00:06, 3.68it/s]
48%|████▊ | 20/42 [00:05<00:05, 3.68it/s]
50%|█████ | 21/42 [00:05<00:05, 3.68it/s]
52%|█████▏ | 22/42 [00:05<00:05, 3.68it/s]
55%|█████▍ | 23/42 [00:06<00:05, 3.68it/s]
57%|█████▋ | 24/42 [00:06<00:04, 3.68it/s]
60%|█████▉ | 25/42 [00:06<00:04, 3.69it/s]
62%|██████▏ | 26/42 [00:06<00:04, 3.69it/s]
64%|██████▍ | 27/42 [00:07<00:04, 3.68it/s]
67%|██████▋ | 28/42 [00:07<00:03, 3.68it/s]
69%|██████▉ | 29/42 [00:07<00:03, 3.69it/s]
71%|███████▏ | 30/42 [00:08<00:03, 3.68it/s]
74%|███████▍ | 31/42 [00:08<00:02, 3.68it/s]
76%|███████▌ | 32/42 [00:08<00:02, 3.68it/s]
79%|███████▊ | 33/42 [00:08<00:02, 3.69it/s]
81%|████████ | 34/42 [00:09<00:02, 3.69it/s]
83%|████████▎ | 35/42 [00:09<00:01, 3.68it/s]
86%|████████▌ | 36/42 [00:09<00:01, 3.68it/s]
88%|████████▊ | 37/42 [00:09<00:01, 3.69it/s]
90%|█████████ | 38/42 [00:10<00:01, 3.69it/s]
93%|█████████▎| 39/42 [00:10<00:00, 3.68it/s]
95%|█████████▌| 40/42 [00:10<00:00, 3.68it/s]
98%|█████████▊| 41/42 [00:11<00:00, 3.68it/s]
100%|██████████| 42/42 [00:11<00:00, 3.68it/s]
100%|██████████| 42/42 [00:11<00:00, 3.70it/s]