Readme
…
Model description
…
Intended use
…
Ethical considerations
…
Caveats and recommendations
…
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
import fs from "node:fs";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run lukevink/erikadress_jix using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"lukevink/erikadress_jix:8aac0c5751efacf1aeb556df676c875b3adaf09d48e7102ab52bbee775549c27",
{
input: {
width: 512,
height: 768,
prompt: "photo of a woman wearing a jIX dress standing on a beach, half portrait, ((perfect face)), ((detailed face)), hyperrealism, hd quality, 8k resolution, Canon Eos 5D",
num_outputs: 4,
guidance_scale: 7.5,
negative_prompt: "(((painting))), (((ugly))), (((duplicate))), ((morbid)), ((mutilated)), [out of frame], extra fingers, mutated hands, ((poorly drawn hands)), ((poorly drawn face)), (((mutation))), (((deformed))), ((ugly)), blurry, ((bad anatomy)), (((bad proportions))), ((extra limbs)), cloned face, (((disfigured))), out of frame, ugly, extra limbs, (bad anatomy), gross proportions, (malformed limbs), ((missing arms)), ((missing legs)), (((extra arms))), (((extra legs))), mutated hands, (fused fingers), (too many fingers), (((long neck)))",
num_inference_steps: 50
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run lukevink/erikadress_jix using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"lukevink/erikadress_jix:8aac0c5751efacf1aeb556df676c875b3adaf09d48e7102ab52bbee775549c27",
input={
"width": 512,
"height": 768,
"prompt": "photo of a woman wearing a jIX dress standing on a beach, half portrait, ((perfect face)), ((detailed face)), hyperrealism, hd quality, 8k resolution, Canon Eos 5D",
"num_outputs": 4,
"guidance_scale": 7.5,
"negative_prompt": "(((painting))), (((ugly))), (((duplicate))), ((morbid)), ((mutilated)), [out of frame], extra fingers, mutated hands, ((poorly drawn hands)), ((poorly drawn face)), (((mutation))), (((deformed))), ((ugly)), blurry, ((bad anatomy)), (((bad proportions))), ((extra limbs)), cloned face, (((disfigured))), out of frame, ugly, extra limbs, (bad anatomy), gross proportions, (malformed limbs), ((missing arms)), ((missing legs)), (((extra arms))), (((extra legs))), mutated hands, (fused fingers), (too many fingers), (((long neck)))",
"num_inference_steps": 50
}
)
# To access the file URL:
print(output[0].url())
#=> "http://example.com"
# To write the file to disk:
with open("my-image.png", "wb") as file:
file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run lukevink/erikadress_jix using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "lukevink/erikadress_jix:8aac0c5751efacf1aeb556df676c875b3adaf09d48e7102ab52bbee775549c27",
"input": {
"width": 512,
"height": 768,
"prompt": "photo of a woman wearing a jIX dress standing on a beach, half portrait, ((perfect face)), ((detailed face)), hyperrealism, hd quality, 8k resolution, Canon Eos 5D",
"num_outputs": 4,
"guidance_scale": 7.5,
"negative_prompt": "(((painting))), (((ugly))), (((duplicate))), ((morbid)), ((mutilated)), [out of frame], extra fingers, mutated hands, ((poorly drawn hands)), ((poorly drawn face)), (((mutation))), (((deformed))), ((ugly)), blurry, ((bad anatomy)), (((bad proportions))), ((extra limbs)), cloned face, (((disfigured))), out of frame, ugly, extra limbs, (bad anatomy), gross proportions, (malformed limbs), ((missing arms)), ((missing legs)), (((extra arms))), (((extra legs))), mutated hands, (fused fingers), (too many fingers), (((long neck)))",
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2022-12-24T08:30:13.647653Z",
"created_at": "2022-12-24T08:28:07.918587Z",
"data_removed": false,
"error": null,
"id": "dlsi3sfjprfdxaut3jncousauu",
"input": {
"width": 512,
"height": "768",
"prompt": "photo of a woman wearing a jIX dress standing on a beach, half portrait, ((perfect face)), ((detailed face)), hyperrealism, hd quality, 8k resolution, Canon Eos 5D",
"num_outputs": "4",
"guidance_scale": 7.5,
"negative_prompt": "(((painting))), (((ugly))), (((duplicate))), ((morbid)), ((mutilated)), [out of frame], extra fingers, mutated hands, ((poorly drawn hands)), ((poorly drawn face)), (((mutation))), (((deformed))), ((ugly)), blurry, ((bad anatomy)), (((bad proportions))), ((extra limbs)), cloned face, (((disfigured))), out of frame, ugly, extra limbs, (bad anatomy), gross proportions, (malformed limbs), ((missing arms)), ((missing legs)), (((extra arms))), (((extra legs))), mutated hands, (fused fingers), (too many fingers), (((long neck)))",
"num_inference_steps": 50
},
"logs": "Loading pipeline...\nUsing seed: 6298\nGlobal seed set to 6298\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:02<02:08, 2.63s/it]\n 4%|▍ | 2/50 [00:02<00:59, 1.25s/it]\n 6%|▌ | 3/50 [00:03<00:37, 1.24it/s]\n 8%|▊ | 4/50 [00:03<00:27, 1.67it/s]\n 10%|█ | 5/50 [00:03<00:21, 2.07it/s]\n 12%|█▏ | 6/50 [00:04<00:18, 2.41it/s]\n 14%|█▍ | 7/50 [00:04<00:15, 2.70it/s]\n 16%|█▌ | 8/50 [00:04<00:14, 2.92it/s]\n 18%|█▊ | 9/50 [00:04<00:13, 3.10it/s]\n 20%|██ | 10/50 [00:05<00:12, 3.23it/s]\n 22%|██▏ | 11/50 [00:05<00:11, 3.33it/s]\n 24%|██▍ | 12/50 [00:05<00:11, 3.40it/s]\n 26%|██▌ | 13/50 [00:05<00:10, 3.45it/s]\n 28%|██▊ | 14/50 [00:06<00:10, 3.48it/s]\n 30%|███ | 15/50 [00:06<00:09, 3.51it/s]\n 32%|███▏ | 16/50 [00:06<00:09, 3.53it/s]\n 34%|███▍ | 17/50 [00:07<00:09, 3.54it/s]\n 36%|███▌ | 18/50 [00:07<00:09, 3.55it/s]\n 38%|███▊ | 19/50 [00:07<00:08, 3.56it/s]\n 40%|████ | 20/50 [00:07<00:08, 3.56it/s]\n 42%|████▏ | 21/50 [00:08<00:08, 3.56it/s]\n 44%|████▍ | 22/50 [00:08<00:07, 3.56it/s]\n 46%|████▌ | 23/50 [00:08<00:07, 3.56it/s]\n 48%|████▊ | 24/50 [00:09<00:07, 3.56it/s]\n 50%|█████ | 25/50 [00:09<00:07, 3.56it/s]\n 52%|█████▏ | 26/50 [00:09<00:06, 3.56it/s]\n 54%|█████▍ | 27/50 [00:09<00:06, 3.56it/s]\n 56%|█████▌ | 28/50 [00:10<00:06, 3.56it/s]\n 58%|█████▊ | 29/50 [00:10<00:05, 3.56it/s]\n 60%|██████ | 30/50 [00:10<00:05, 3.56it/s]\n 62%|██████▏ | 31/50 [00:11<00:05, 3.56it/s]\n 64%|██████▍ | 32/50 [00:11<00:05, 3.57it/s]\n 66%|██████▌ | 33/50 [00:11<00:04, 3.57it/s]\n 68%|██████▊ | 34/50 [00:11<00:04, 3.57it/s]\n 70%|███████ | 35/50 [00:12<00:04, 3.57it/s]\n 72%|███████▏ | 36/50 [00:12<00:03, 3.57it/s]\n 74%|███████▍ | 37/50 [00:12<00:03, 3.57it/s]\n 76%|███████▌ | 38/50 [00:13<00:03, 3.57it/s]\n 78%|███████▊ | 39/50 [00:13<00:03, 3.57it/s]\n 80%|████████ | 40/50 [00:13<00:02, 3.57it/s]\n 82%|████████▏ | 41/50 [00:13<00:02, 3.57it/s]\n 84%|████████▍ | 42/50 [00:14<00:02, 3.57it/s]\n 86%|████████▌ | 43/50 [00:14<00:01, 3.57it/s]\n 88%|████████▊ | 44/50 [00:14<00:01, 3.57it/s]\n 90%|█████████ | 45/50 [00:14<00:01, 3.57it/s]\n 92%|█████████▏| 46/50 [00:15<00:01, 3.57it/s]\n 94%|█████████▍| 47/50 [00:15<00:00, 3.57it/s]\n 96%|█████████▌| 48/50 [00:15<00:00, 3.57it/s]\n 98%|█████████▊| 49/50 [00:16<00:00, 3.57it/s]\n100%|██████████| 50/50 [00:16<00:00, 3.57it/s]\n100%|██████████| 50/50 [00:16<00:00, 3.05it/s]",
"metrics": {
"predict_time": 23.164648,
"total_time": 125.729066
},
"output": [
"https://replicate.delivery/pbxt/Tbh9HPbVIpIBEZfbzfWIHKiOHTeXWVwNSoZy5WGGMNxkUNagA/out-0.png",
"https://replicate.delivery/pbxt/HFnIJjzm5o55IR3MZALBSRfhnwpB74S5wXHjkJlic8nJVjGIA/out-1.png",
"https://replicate.delivery/pbxt/SBc0ATyFkj6HIJqcOZn3m8Y0EUOBxS2LKg9pEEasC8DlqRDE/out-2.png",
"https://replicate.delivery/pbxt/4SV7SRI2WELHBRAj2Aj5thUsNBTm9ljY6sDkEsYoPAClqRDE/out-3.png"
],
"started_at": "2022-12-24T08:29:50.483005Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/dlsi3sfjprfdxaut3jncousauu",
"cancel": "https://api.replicate.com/v1/predictions/dlsi3sfjprfdxaut3jncousauu/cancel"
},
"version": "8aac0c5751efacf1aeb556df676c875b3adaf09d48e7102ab52bbee775549c27"
}
Loading pipeline...
Using seed: 6298
Global seed set to 6298
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:02<02:08, 2.63s/it]
4%|▍ | 2/50 [00:02<00:59, 1.25s/it]
6%|▌ | 3/50 [00:03<00:37, 1.24it/s]
8%|▊ | 4/50 [00:03<00:27, 1.67it/s]
10%|█ | 5/50 [00:03<00:21, 2.07it/s]
12%|█▏ | 6/50 [00:04<00:18, 2.41it/s]
14%|█▍ | 7/50 [00:04<00:15, 2.70it/s]
16%|█▌ | 8/50 [00:04<00:14, 2.92it/s]
18%|█▊ | 9/50 [00:04<00:13, 3.10it/s]
20%|██ | 10/50 [00:05<00:12, 3.23it/s]
22%|██▏ | 11/50 [00:05<00:11, 3.33it/s]
24%|██▍ | 12/50 [00:05<00:11, 3.40it/s]
26%|██▌ | 13/50 [00:05<00:10, 3.45it/s]
28%|██▊ | 14/50 [00:06<00:10, 3.48it/s]
30%|███ | 15/50 [00:06<00:09, 3.51it/s]
32%|███▏ | 16/50 [00:06<00:09, 3.53it/s]
34%|███▍ | 17/50 [00:07<00:09, 3.54it/s]
36%|███▌ | 18/50 [00:07<00:09, 3.55it/s]
38%|███▊ | 19/50 [00:07<00:08, 3.56it/s]
40%|████ | 20/50 [00:07<00:08, 3.56it/s]
42%|████▏ | 21/50 [00:08<00:08, 3.56it/s]
44%|████▍ | 22/50 [00:08<00:07, 3.56it/s]
46%|████▌ | 23/50 [00:08<00:07, 3.56it/s]
48%|████▊ | 24/50 [00:09<00:07, 3.56it/s]
50%|█████ | 25/50 [00:09<00:07, 3.56it/s]
52%|█████▏ | 26/50 [00:09<00:06, 3.56it/s]
54%|█████▍ | 27/50 [00:09<00:06, 3.56it/s]
56%|█████▌ | 28/50 [00:10<00:06, 3.56it/s]
58%|█████▊ | 29/50 [00:10<00:05, 3.56it/s]
60%|██████ | 30/50 [00:10<00:05, 3.56it/s]
62%|██████▏ | 31/50 [00:11<00:05, 3.56it/s]
64%|██████▍ | 32/50 [00:11<00:05, 3.57it/s]
66%|██████▌ | 33/50 [00:11<00:04, 3.57it/s]
68%|██████▊ | 34/50 [00:11<00:04, 3.57it/s]
70%|███████ | 35/50 [00:12<00:04, 3.57it/s]
72%|███████▏ | 36/50 [00:12<00:03, 3.57it/s]
74%|███████▍ | 37/50 [00:12<00:03, 3.57it/s]
76%|███████▌ | 38/50 [00:13<00:03, 3.57it/s]
78%|███████▊ | 39/50 [00:13<00:03, 3.57it/s]
80%|████████ | 40/50 [00:13<00:02, 3.57it/s]
82%|████████▏ | 41/50 [00:13<00:02, 3.57it/s]
84%|████████▍ | 42/50 [00:14<00:02, 3.57it/s]
86%|████████▌ | 43/50 [00:14<00:01, 3.57it/s]
88%|████████▊ | 44/50 [00:14<00:01, 3.57it/s]
90%|█████████ | 45/50 [00:14<00:01, 3.57it/s]
92%|█████████▏| 46/50 [00:15<00:01, 3.57it/s]
94%|█████████▍| 47/50 [00:15<00:00, 3.57it/s]
96%|█████████▌| 48/50 [00:15<00:00, 3.57it/s]
98%|█████████▊| 49/50 [00:16<00:00, 3.57it/s]
100%|██████████| 50/50 [00:16<00:00, 3.57it/s]
100%|██████████| 50/50 [00:16<00:00, 3.05it/s]
This model costs approximately $0.025 to run on Replicate, or 40 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.
This model runs on Nvidia A100 (80GB) GPU hardware. Predictions typically complete within 19 seconds. The predict time for this model varies significantly based on the inputs.
…
…
…
…
…
This model is cold. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
This model costs approximately $0.025 to run on Replicate, but this varies depending on your inputs. View more.
Loading pipeline...
Using seed: 6298
Global seed set to 6298
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:02<02:08, 2.63s/it]
4%|▍ | 2/50 [00:02<00:59, 1.25s/it]
6%|▌ | 3/50 [00:03<00:37, 1.24it/s]
8%|▊ | 4/50 [00:03<00:27, 1.67it/s]
10%|█ | 5/50 [00:03<00:21, 2.07it/s]
12%|█▏ | 6/50 [00:04<00:18, 2.41it/s]
14%|█▍ | 7/50 [00:04<00:15, 2.70it/s]
16%|█▌ | 8/50 [00:04<00:14, 2.92it/s]
18%|█▊ | 9/50 [00:04<00:13, 3.10it/s]
20%|██ | 10/50 [00:05<00:12, 3.23it/s]
22%|██▏ | 11/50 [00:05<00:11, 3.33it/s]
24%|██▍ | 12/50 [00:05<00:11, 3.40it/s]
26%|██▌ | 13/50 [00:05<00:10, 3.45it/s]
28%|██▊ | 14/50 [00:06<00:10, 3.48it/s]
30%|███ | 15/50 [00:06<00:09, 3.51it/s]
32%|███▏ | 16/50 [00:06<00:09, 3.53it/s]
34%|███▍ | 17/50 [00:07<00:09, 3.54it/s]
36%|███▌ | 18/50 [00:07<00:09, 3.55it/s]
38%|███▊ | 19/50 [00:07<00:08, 3.56it/s]
40%|████ | 20/50 [00:07<00:08, 3.56it/s]
42%|████▏ | 21/50 [00:08<00:08, 3.56it/s]
44%|████▍ | 22/50 [00:08<00:07, 3.56it/s]
46%|████▌ | 23/50 [00:08<00:07, 3.56it/s]
48%|████▊ | 24/50 [00:09<00:07, 3.56it/s]
50%|█████ | 25/50 [00:09<00:07, 3.56it/s]
52%|█████▏ | 26/50 [00:09<00:06, 3.56it/s]
54%|█████▍ | 27/50 [00:09<00:06, 3.56it/s]
56%|█████▌ | 28/50 [00:10<00:06, 3.56it/s]
58%|█████▊ | 29/50 [00:10<00:05, 3.56it/s]
60%|██████ | 30/50 [00:10<00:05, 3.56it/s]
62%|██████▏ | 31/50 [00:11<00:05, 3.56it/s]
64%|██████▍ | 32/50 [00:11<00:05, 3.57it/s]
66%|██████▌ | 33/50 [00:11<00:04, 3.57it/s]
68%|██████▊ | 34/50 [00:11<00:04, 3.57it/s]
70%|███████ | 35/50 [00:12<00:04, 3.57it/s]
72%|███████▏ | 36/50 [00:12<00:03, 3.57it/s]
74%|███████▍ | 37/50 [00:12<00:03, 3.57it/s]
76%|███████▌ | 38/50 [00:13<00:03, 3.57it/s]
78%|███████▊ | 39/50 [00:13<00:03, 3.57it/s]
80%|████████ | 40/50 [00:13<00:02, 3.57it/s]
82%|████████▏ | 41/50 [00:13<00:02, 3.57it/s]
84%|████████▍ | 42/50 [00:14<00:02, 3.57it/s]
86%|████████▌ | 43/50 [00:14<00:01, 3.57it/s]
88%|████████▊ | 44/50 [00:14<00:01, 3.57it/s]
90%|█████████ | 45/50 [00:14<00:01, 3.57it/s]
92%|█████████▏| 46/50 [00:15<00:01, 3.57it/s]
94%|█████████▍| 47/50 [00:15<00:00, 3.57it/s]
96%|█████████▌| 48/50 [00:15<00:00, 3.57it/s]
98%|█████████▊| 49/50 [00:16<00:00, 3.57it/s]
100%|██████████| 50/50 [00:16<00:00, 3.57it/s]
100%|██████████| 50/50 [00:16<00:00, 3.05it/s]