Readme
This model doesn't have a readme.
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
import fs from "node:fs";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run maczzzzzzz/pixolpepe using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"maczzzzzzz/pixolpepe:4428340bb2d06252a8b2759548f977919dbae34772b05f270a4656c86625ed9b",
{
input: {
model: "dev",
prompt: "pepe sitting on a couch watching crypto charts on a big screen tv, bong sitting on coffee table, pepe has green skin and is wearing a white shirt a chain, cargo shorts, and white nike shoes",
go_fast: false,
lora_scale: 1,
megapixels: "1",
num_outputs: 1,
aspect_ratio: "1:1",
output_format: "webp",
guidance_scale: 3.5,
output_quality: 90,
prompt_strength: 0.8,
extra_lora_scale: 1,
num_inference_steps: 28
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run maczzzzzzz/pixolpepe using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"maczzzzzzz/pixolpepe:4428340bb2d06252a8b2759548f977919dbae34772b05f270a4656c86625ed9b",
input={
"model": "dev",
"prompt": "pepe sitting on a couch watching crypto charts on a big screen tv, bong sitting on coffee table, pepe has green skin and is wearing a white shirt a chain, cargo shorts, and white nike shoes",
"go_fast": False,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 90,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run maczzzzzzz/pixolpepe using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "maczzzzzzz/pixolpepe:4428340bb2d06252a8b2759548f977919dbae34772b05f270a4656c86625ed9b",
"input": {
"model": "dev",
"prompt": "pepe sitting on a couch watching crypto charts on a big screen tv, bong sitting on coffee table, pepe has green skin and is wearing a white shirt a chain, cargo shorts, and white nike shoes",
"go_fast": false,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 90,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2024-10-27T03:15:29.996671Z",
"created_at": "2024-10-27T03:15:17.382000Z",
"data_removed": false,
"error": null,
"id": "fyyfpwmf0srm20cjsfw8jncz4m",
"input": {
"model": "dev",
"prompt": "pepe sitting on a couch watching crypto charts on a big screen tv, bong sitting on coffee table, pepe has green skin and is wearing a white shirt a chain, cargo shorts, and white nike shoes",
"lora_scale": 1,
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 90,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
},
"logs": "Using seed: 28250\nPrompt: pepe sitting on a couch watching crypto charts on a big screen tv, bong sitting on coffee table, pepe has green skin and is wearing a white shirt a chain, cargo shorts, and white nike shoes\n[!] txt2img mode\nUsing dev model\nfree=8537463918592\nDownloading weights\n2024-10-27T03:15:17Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpk2yskt3x/weights url=https://replicate.delivery/yhqm/yY2W5rBrSSJcCJW7CWSwufaUU8BvEtDYupvVzzT0z1vi6a1JA/trained_model.tar\n2024-10-27T03:15:19Z | INFO | [ Complete ] dest=/tmp/tmpk2yskt3x/weights size=\"172 MB\" total_elapsed=1.621s url=https://replicate.delivery/yhqm/yY2W5rBrSSJcCJW7CWSwufaUU8BvEtDYupvVzzT0z1vi6a1JA/trained_model.tar\nDownloaded weights in 1.65s\nLoaded LoRAs in 2.24s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:09, 2.88it/s]\n 7%|▋ | 2/28 [00:00<00:08, 3.22it/s]\n 11%|█ | 3/28 [00:00<00:08, 3.06it/s]\n 14%|█▍ | 4/28 [00:01<00:08, 2.99it/s]\n 18%|█▊ | 5/28 [00:01<00:07, 2.95it/s]\n 21%|██▏ | 6/28 [00:02<00:07, 2.93it/s]\n 25%|██▌ | 7/28 [00:02<00:07, 2.91it/s]\n 29%|██▊ | 8/28 [00:02<00:06, 2.90it/s]\n 32%|███▏ | 9/28 [00:03<00:06, 2.90it/s]\n 36%|███▌ | 10/28 [00:03<00:06, 2.89it/s]\n 39%|███▉ | 11/28 [00:03<00:05, 2.89it/s]\n 43%|████▎ | 12/28 [00:04<00:05, 2.89it/s]\n 46%|████▋ | 13/28 [00:04<00:05, 2.89it/s]\n 50%|█████ | 14/28 [00:04<00:04, 2.88it/s]\n 54%|█████▎ | 15/28 [00:05<00:04, 2.88it/s]\n 57%|█████▋ | 16/28 [00:05<00:04, 2.88it/s]\n 61%|██████ | 17/28 [00:05<00:03, 2.88it/s]\n 64%|██████▍ | 18/28 [00:06<00:03, 2.88it/s]\n 68%|██████▊ | 19/28 [00:06<00:03, 2.88it/s]\n 71%|███████▏ | 20/28 [00:06<00:02, 2.88it/s]\n 75%|███████▌ | 21/28 [00:07<00:02, 2.88it/s]\n 79%|███████▊ | 22/28 [00:07<00:02, 2.88it/s]\n 82%|████████▏ | 23/28 [00:07<00:01, 2.88it/s]\n 86%|████████▌ | 24/28 [00:08<00:01, 2.88it/s]\n 89%|████████▉ | 25/28 [00:08<00:01, 2.88it/s]\n 93%|█████████▎| 26/28 [00:08<00:00, 2.88it/s]\n 96%|█████████▋| 27/28 [00:09<00:00, 2.88it/s]\n100%|██████████| 28/28 [00:09<00:00, 2.88it/s]\n100%|██████████| 28/28 [00:09<00:00, 2.90it/s]",
"metrics": {
"predict_time": 12.223437820000001,
"total_time": 12.614671
},
"output": [
"https://replicate.delivery/yhqm/TimLrACl25bhL1RPboPThW8xk9hoCZbAvH1Y2uZoajTUit6E/out-0.webp"
],
"started_at": "2024-10-27T03:15:17.773233Z",
"status": "succeeded",
"urls": {
"stream": "https://stream.replicate.com/v1/files/wcdb-327dyykd27k4gd6mqioup46v6qiekmma5t5ogugfaeinpdeuunya",
"get": "https://api.replicate.com/v1/predictions/fyyfpwmf0srm20cjsfw8jncz4m",
"cancel": "https://api.replicate.com/v1/predictions/fyyfpwmf0srm20cjsfw8jncz4m/cancel"
},
"version": "4428340bb2d06252a8b2759548f977919dbae34772b05f270a4656c86625ed9b"
}
Using seed: 28250
Prompt: pepe sitting on a couch watching crypto charts on a big screen tv, bong sitting on coffee table, pepe has green skin and is wearing a white shirt a chain, cargo shorts, and white nike shoes
[!] txt2img mode
Using dev model
free=8537463918592
Downloading weights
2024-10-27T03:15:17Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpk2yskt3x/weights url=https://replicate.delivery/yhqm/yY2W5rBrSSJcCJW7CWSwufaUU8BvEtDYupvVzzT0z1vi6a1JA/trained_model.tar
2024-10-27T03:15:19Z | INFO | [ Complete ] dest=/tmp/tmpk2yskt3x/weights size="172 MB" total_elapsed=1.621s url=https://replicate.delivery/yhqm/yY2W5rBrSSJcCJW7CWSwufaUU8BvEtDYupvVzzT0z1vi6a1JA/trained_model.tar
Downloaded weights in 1.65s
Loaded LoRAs in 2.24s
0%| | 0/28 [00:00<?, ?it/s]
4%|▎ | 1/28 [00:00<00:09, 2.88it/s]
7%|▋ | 2/28 [00:00<00:08, 3.22it/s]
11%|█ | 3/28 [00:00<00:08, 3.06it/s]
14%|█▍ | 4/28 [00:01<00:08, 2.99it/s]
18%|█▊ | 5/28 [00:01<00:07, 2.95it/s]
21%|██▏ | 6/28 [00:02<00:07, 2.93it/s]
25%|██▌ | 7/28 [00:02<00:07, 2.91it/s]
29%|██▊ | 8/28 [00:02<00:06, 2.90it/s]
32%|███▏ | 9/28 [00:03<00:06, 2.90it/s]
36%|███▌ | 10/28 [00:03<00:06, 2.89it/s]
39%|███▉ | 11/28 [00:03<00:05, 2.89it/s]
43%|████▎ | 12/28 [00:04<00:05, 2.89it/s]
46%|████▋ | 13/28 [00:04<00:05, 2.89it/s]
50%|█████ | 14/28 [00:04<00:04, 2.88it/s]
54%|█████▎ | 15/28 [00:05<00:04, 2.88it/s]
57%|█████▋ | 16/28 [00:05<00:04, 2.88it/s]
61%|██████ | 17/28 [00:05<00:03, 2.88it/s]
64%|██████▍ | 18/28 [00:06<00:03, 2.88it/s]
68%|██████▊ | 19/28 [00:06<00:03, 2.88it/s]
71%|███████▏ | 20/28 [00:06<00:02, 2.88it/s]
75%|███████▌ | 21/28 [00:07<00:02, 2.88it/s]
79%|███████▊ | 22/28 [00:07<00:02, 2.88it/s]
82%|████████▏ | 23/28 [00:07<00:01, 2.88it/s]
86%|████████▌ | 24/28 [00:08<00:01, 2.88it/s]
89%|████████▉ | 25/28 [00:08<00:01, 2.88it/s]
93%|█████████▎| 26/28 [00:08<00:00, 2.88it/s]
96%|█████████▋| 27/28 [00:09<00:00, 2.88it/s]
100%|██████████| 28/28 [00:09<00:00, 2.88it/s]
100%|██████████| 28/28 [00:09<00:00, 2.90it/s]
This model runs on Nvidia H100 GPU hardware. We don't yet have enough runs of this model to provide performance information.
This model doesn't have a readme.
This model is warm. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
This model runs on H100 hardware which costs $0.001525 per second. View more.
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
Using seed: 28250
Prompt: pepe sitting on a couch watching crypto charts on a big screen tv, bong sitting on coffee table, pepe has green skin and is wearing a white shirt a chain, cargo shorts, and white nike shoes
[!] txt2img mode
Using dev model
free=8537463918592
Downloading weights
2024-10-27T03:15:17Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpk2yskt3x/weights url=https://replicate.delivery/yhqm/yY2W5rBrSSJcCJW7CWSwufaUU8BvEtDYupvVzzT0z1vi6a1JA/trained_model.tar
2024-10-27T03:15:19Z | INFO | [ Complete ] dest=/tmp/tmpk2yskt3x/weights size="172 MB" total_elapsed=1.621s url=https://replicate.delivery/yhqm/yY2W5rBrSSJcCJW7CWSwufaUU8BvEtDYupvVzzT0z1vi6a1JA/trained_model.tar
Downloaded weights in 1.65s
Loaded LoRAs in 2.24s
0%| | 0/28 [00:00<?, ?it/s]
4%|▎ | 1/28 [00:00<00:09, 2.88it/s]
7%|▋ | 2/28 [00:00<00:08, 3.22it/s]
11%|█ | 3/28 [00:00<00:08, 3.06it/s]
14%|█▍ | 4/28 [00:01<00:08, 2.99it/s]
18%|█▊ | 5/28 [00:01<00:07, 2.95it/s]
21%|██▏ | 6/28 [00:02<00:07, 2.93it/s]
25%|██▌ | 7/28 [00:02<00:07, 2.91it/s]
29%|██▊ | 8/28 [00:02<00:06, 2.90it/s]
32%|███▏ | 9/28 [00:03<00:06, 2.90it/s]
36%|███▌ | 10/28 [00:03<00:06, 2.89it/s]
39%|███▉ | 11/28 [00:03<00:05, 2.89it/s]
43%|████▎ | 12/28 [00:04<00:05, 2.89it/s]
46%|████▋ | 13/28 [00:04<00:05, 2.89it/s]
50%|█████ | 14/28 [00:04<00:04, 2.88it/s]
54%|█████▎ | 15/28 [00:05<00:04, 2.88it/s]
57%|█████▋ | 16/28 [00:05<00:04, 2.88it/s]
61%|██████ | 17/28 [00:05<00:03, 2.88it/s]
64%|██████▍ | 18/28 [00:06<00:03, 2.88it/s]
68%|██████▊ | 19/28 [00:06<00:03, 2.88it/s]
71%|███████▏ | 20/28 [00:06<00:02, 2.88it/s]
75%|███████▌ | 21/28 [00:07<00:02, 2.88it/s]
79%|███████▊ | 22/28 [00:07<00:02, 2.88it/s]
82%|████████▏ | 23/28 [00:07<00:01, 2.88it/s]
86%|████████▌ | 24/28 [00:08<00:01, 2.88it/s]
89%|████████▉ | 25/28 [00:08<00:01, 2.88it/s]
93%|█████████▎| 26/28 [00:08<00:00, 2.88it/s]
96%|█████████▋| 27/28 [00:09<00:00, 2.88it/s]
100%|██████████| 28/28 [00:09<00:00, 2.88it/s]
100%|██████████| 28/28 [00:09<00:00, 2.90it/s]