maczzzzzzz / sketchy
sketchy bear model
- Public
- 17 runs
-
H100
Prediction
maczzzzzzz/sketchy:213dd7bb16542c776426a37e09559e5fd718b1a9726e5dac646b16c030a8a88dIDbxcw52xsg1rm40cjrsds6e0bacStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- in sketchy style, bear in a wheelchair going down a set of stairs
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "in sketchy style, bear in a wheelchair going down a set of stairs", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run maczzzzzzz/sketchy using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "maczzzzzzz/sketchy:213dd7bb16542c776426a37e09559e5fd718b1a9726e5dac646b16c030a8a88d", { input: { model: "dev", prompt: "in sketchy style, bear in a wheelchair going down a set of stairs", lora_scale: 1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run maczzzzzzz/sketchy using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "maczzzzzzz/sketchy:213dd7bb16542c776426a37e09559e5fd718b1a9726e5dac646b16c030a8a88d", input={ "model": "dev", "prompt": "in sketchy style, bear in a wheelchair going down a set of stairs", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run maczzzzzzz/sketchy using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "maczzzzzzz/sketchy:213dd7bb16542c776426a37e09559e5fd718b1a9726e5dac646b16c030a8a88d", "input": { "model": "dev", "prompt": "in sketchy style, bear in a wheelchair going down a set of stairs", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-26T01:06:05.679732Z", "created_at": "2024-10-26T01:05:53.024000Z", "data_removed": false, "error": null, "id": "bxcw52xsg1rm40cjrsds6e0bac", "input": { "model": "dev", "prompt": "in sketchy style, bear in a wheelchair going down a set of stairs", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 3556\nPrompt: in sketchy style, bear in a wheelchair going down a set of stairs\n[!] txt2img mode\nUsing dev model\nfree=8357997277184\nDownloading weights\n2024-10-26T01:05:53Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmp2s8ok9qv/weights url=https://replicate.delivery/yhqm/pxDU9kvpmVrbBpqsehMP49F5gQWoXmeoZf8MUfavHMF6r6pOB/trained_model.tar\n2024-10-26T01:05:55Z | INFO | [ Complete ] dest=/tmp/tmp2s8ok9qv/weights size=\"172 MB\" total_elapsed=1.532s url=https://replicate.delivery/yhqm/pxDU9kvpmVrbBpqsehMP49F5gQWoXmeoZf8MUfavHMF6r6pOB/trained_model.tar\nDownloaded weights in 1.63s\nLoaded LoRAs in 2.35s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:09, 2.90it/s]\n 7%|▋ | 2/28 [00:00<00:08, 3.23it/s]\n 11%|█ | 3/28 [00:00<00:08, 3.07it/s]\n 14%|█▍ | 4/28 [00:01<00:07, 3.00it/s]\n 18%|█▊ | 5/28 [00:01<00:07, 2.96it/s]\n 21%|██▏ | 6/28 [00:02<00:07, 2.94it/s]\n 25%|██▌ | 7/28 [00:02<00:07, 2.93it/s]\n 29%|██▊ | 8/28 [00:02<00:06, 2.92it/s]\n 32%|███▏ | 9/28 [00:03<00:06, 2.91it/s]\n 36%|███▌ | 10/28 [00:03<00:06, 2.91it/s]\n 39%|███▉ | 11/28 [00:03<00:05, 2.91it/s]\n 43%|████▎ | 12/28 [00:04<00:05, 2.90it/s]\n 46%|████▋ | 13/28 [00:04<00:05, 2.90it/s]\n 50%|█████ | 14/28 [00:04<00:04, 2.90it/s]\n 54%|█████▎ | 15/28 [00:05<00:04, 2.90it/s]\n 57%|█████▋ | 16/28 [00:05<00:04, 2.90it/s]\n 61%|██████ | 17/28 [00:05<00:03, 2.90it/s]\n 64%|██████▍ | 18/28 [00:06<00:03, 2.90it/s]\n 68%|██████▊ | 19/28 [00:06<00:03, 2.90it/s]\n 71%|███████▏ | 20/28 [00:06<00:02, 2.90it/s]\n 75%|███████▌ | 21/28 [00:07<00:02, 2.90it/s]\n 79%|███████▊ | 22/28 [00:07<00:02, 2.90it/s]\n 82%|████████▏ | 23/28 [00:07<00:01, 2.90it/s]\n 86%|████████▌ | 24/28 [00:08<00:01, 2.90it/s]\n 89%|████████▉ | 25/28 [00:08<00:01, 2.90it/s]\n 93%|█████████▎| 26/28 [00:08<00:00, 2.90it/s]\n 96%|█████████▋| 27/28 [00:09<00:00, 2.90it/s]\n100%|██████████| 28/28 [00:09<00:00, 2.90it/s]\n100%|██████████| 28/28 [00:09<00:00, 2.92it/s]", "metrics": { "predict_time": 12.320344473, "total_time": 12.655732 }, "output": [ "https://replicate.delivery/yhqm/TKY0hD571tIefkLD6MVCJ9f3drlLKhPmUX0YQ25rwBT6TepOB/out-0.webp" ], "started_at": "2024-10-26T01:05:53.359388Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/wcdb-s52e5huzo5cu3fzwnpb2cnjrgkubyd77yxopymrbyojpyzkwjozq", "get": "https://api.replicate.com/v1/predictions/bxcw52xsg1rm40cjrsds6e0bac", "cancel": "https://api.replicate.com/v1/predictions/bxcw52xsg1rm40cjrsds6e0bac/cancel" }, "version": "213dd7bb16542c776426a37e09559e5fd718b1a9726e5dac646b16c030a8a88d" }
Generated inUsing seed: 3556 Prompt: in sketchy style, bear in a wheelchair going down a set of stairs [!] txt2img mode Using dev model free=8357997277184 Downloading weights 2024-10-26T01:05:53Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmp2s8ok9qv/weights url=https://replicate.delivery/yhqm/pxDU9kvpmVrbBpqsehMP49F5gQWoXmeoZf8MUfavHMF6r6pOB/trained_model.tar 2024-10-26T01:05:55Z | INFO | [ Complete ] dest=/tmp/tmp2s8ok9qv/weights size="172 MB" total_elapsed=1.532s url=https://replicate.delivery/yhqm/pxDU9kvpmVrbBpqsehMP49F5gQWoXmeoZf8MUfavHMF6r6pOB/trained_model.tar Downloaded weights in 1.63s Loaded LoRAs in 2.35s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:09, 2.90it/s] 7%|▋ | 2/28 [00:00<00:08, 3.23it/s] 11%|█ | 3/28 [00:00<00:08, 3.07it/s] 14%|█▍ | 4/28 [00:01<00:07, 3.00it/s] 18%|█▊ | 5/28 [00:01<00:07, 2.96it/s] 21%|██▏ | 6/28 [00:02<00:07, 2.94it/s] 25%|██▌ | 7/28 [00:02<00:07, 2.93it/s] 29%|██▊ | 8/28 [00:02<00:06, 2.92it/s] 32%|███▏ | 9/28 [00:03<00:06, 2.91it/s] 36%|███▌ | 10/28 [00:03<00:06, 2.91it/s] 39%|███▉ | 11/28 [00:03<00:05, 2.91it/s] 43%|████▎ | 12/28 [00:04<00:05, 2.90it/s] 46%|████▋ | 13/28 [00:04<00:05, 2.90it/s] 50%|█████ | 14/28 [00:04<00:04, 2.90it/s] 54%|█████▎ | 15/28 [00:05<00:04, 2.90it/s] 57%|█████▋ | 16/28 [00:05<00:04, 2.90it/s] 61%|██████ | 17/28 [00:05<00:03, 2.90it/s] 64%|██████▍ | 18/28 [00:06<00:03, 2.90it/s] 68%|██████▊ | 19/28 [00:06<00:03, 2.90it/s] 71%|███████▏ | 20/28 [00:06<00:02, 2.90it/s] 75%|███████▌ | 21/28 [00:07<00:02, 2.90it/s] 79%|███████▊ | 22/28 [00:07<00:02, 2.90it/s] 82%|████████▏ | 23/28 [00:07<00:01, 2.90it/s] 86%|████████▌ | 24/28 [00:08<00:01, 2.90it/s] 89%|████████▉ | 25/28 [00:08<00:01, 2.90it/s] 93%|█████████▎| 26/28 [00:08<00:00, 2.90it/s] 96%|█████████▋| 27/28 [00:09<00:00, 2.90it/s] 100%|██████████| 28/28 [00:09<00:00, 2.90it/s] 100%|██████████| 28/28 [00:09<00:00, 2.92it/s]
Prediction
maczzzzzzz/sketchy:213dd7bb16542c776426a37e09559e5fd718b1a9726e5dac646b16c030a8a88dID2jx5n30j4hrm00cjrsk99njeymStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- in sketchy style, bear strapped to a rocket about to be launched
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "in sketchy style, bear strapped to a rocket about to be launched", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run maczzzzzzz/sketchy using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "maczzzzzzz/sketchy:213dd7bb16542c776426a37e09559e5fd718b1a9726e5dac646b16c030a8a88d", { input: { model: "dev", prompt: "in sketchy style, bear strapped to a rocket about to be launched", lora_scale: 1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run maczzzzzzz/sketchy using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "maczzzzzzz/sketchy:213dd7bb16542c776426a37e09559e5fd718b1a9726e5dac646b16c030a8a88d", input={ "model": "dev", "prompt": "in sketchy style, bear strapped to a rocket about to be launched", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run maczzzzzzz/sketchy using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "maczzzzzzz/sketchy:213dd7bb16542c776426a37e09559e5fd718b1a9726e5dac646b16c030a8a88d", "input": { "model": "dev", "prompt": "in sketchy style, bear strapped to a rocket about to be launched", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-26T01:17:26.268363Z", "created_at": "2024-10-26T01:17:11.076000Z", "data_removed": false, "error": null, "id": "2jx5n30j4hrm00cjrsk99njeym", "input": { "model": "dev", "prompt": "in sketchy style, bear strapped to a rocket about to be launched", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 38562\nPrompt: in sketchy style, bear strapped to a rocket about to be launched\n[!] txt2img mode\nUsing dev model\nfree=6529799598080\nDownloading weights\n2024-10-26T01:17:11Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmptw_hn_vk/weights url=https://replicate.delivery/yhqm/pxDU9kvpmVrbBpqsehMP49F5gQWoXmeoZf8MUfavHMF6r6pOB/trained_model.tar\n2024-10-26T01:17:15Z | INFO | [ Complete ] dest=/tmp/tmptw_hn_vk/weights size=\"172 MB\" total_elapsed=3.681s url=https://replicate.delivery/yhqm/pxDU9kvpmVrbBpqsehMP49F5gQWoXmeoZf8MUfavHMF6r6pOB/trained_model.tar\nDownloaded weights in 3.71s\nLoaded LoRAs in 4.47s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:09, 2.87it/s]\n 7%|▋ | 2/28 [00:00<00:08, 3.20it/s]\n 11%|█ | 3/28 [00:00<00:08, 3.05it/s]\n 14%|█▍ | 4/28 [00:01<00:08, 2.98it/s]\n 18%|█▊ | 5/28 [00:01<00:07, 2.94it/s]\n 21%|██▏ | 6/28 [00:02<00:07, 2.92it/s]\n 25%|██▌ | 7/28 [00:02<00:07, 2.90it/s]\n 29%|██▊ | 8/28 [00:02<00:06, 2.89it/s]\n 32%|███▏ | 9/28 [00:03<00:06, 2.89it/s]\n 36%|███▌ | 10/28 [00:03<00:06, 2.88it/s]\n 39%|███▉ | 11/28 [00:03<00:05, 2.88it/s]\n 43%|████▎ | 12/28 [00:04<00:05, 2.88it/s]\n 46%|████▋ | 13/28 [00:04<00:05, 2.88it/s]\n 50%|█████ | 14/28 [00:04<00:04, 2.88it/s]\n 54%|█████▎ | 15/28 [00:05<00:04, 2.88it/s]\n 57%|█████▋ | 16/28 [00:05<00:04, 2.88it/s]\n 61%|██████ | 17/28 [00:05<00:03, 2.88it/s]\n 64%|██████▍ | 18/28 [00:06<00:03, 2.88it/s]\n 68%|██████▊ | 19/28 [00:06<00:03, 2.88it/s]\n 71%|███████▏ | 20/28 [00:06<00:02, 2.88it/s]\n 75%|███████▌ | 21/28 [00:07<00:02, 2.88it/s]\n 79%|███████▊ | 22/28 [00:07<00:02, 2.88it/s]\n 82%|████████▏ | 23/28 [00:07<00:01, 2.88it/s]\n 86%|████████▌ | 24/28 [00:08<00:01, 2.88it/s]\n 89%|████████▉ | 25/28 [00:08<00:01, 2.88it/s]\n 93%|█████████▎| 26/28 [00:08<00:00, 2.88it/s]\n 96%|█████████▋| 27/28 [00:09<00:00, 2.88it/s]\n100%|██████████| 28/28 [00:09<00:00, 2.88it/s]\n100%|██████████| 28/28 [00:09<00:00, 2.89it/s]", "metrics": { "predict_time": 14.522380445, "total_time": 15.192363 }, "output": [ "https://replicate.delivery/yhqm/bEjfnmOlKY3nHampL0WnkRBwiqr31zHBLEgdpDFA2QHTqP1JA/out-0.webp" ], "started_at": "2024-10-26T01:17:11.745982Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/wcdb-z4gf2y6rxqpkenjwsh42dtyigpippr7sb2zbuwueuocsvfa3hxwq", "get": "https://api.replicate.com/v1/predictions/2jx5n30j4hrm00cjrsk99njeym", "cancel": "https://api.replicate.com/v1/predictions/2jx5n30j4hrm00cjrsk99njeym/cancel" }, "version": "213dd7bb16542c776426a37e09559e5fd718b1a9726e5dac646b16c030a8a88d" }
Generated inUsing seed: 38562 Prompt: in sketchy style, bear strapped to a rocket about to be launched [!] txt2img mode Using dev model free=6529799598080 Downloading weights 2024-10-26T01:17:11Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmptw_hn_vk/weights url=https://replicate.delivery/yhqm/pxDU9kvpmVrbBpqsehMP49F5gQWoXmeoZf8MUfavHMF6r6pOB/trained_model.tar 2024-10-26T01:17:15Z | INFO | [ Complete ] dest=/tmp/tmptw_hn_vk/weights size="172 MB" total_elapsed=3.681s url=https://replicate.delivery/yhqm/pxDU9kvpmVrbBpqsehMP49F5gQWoXmeoZf8MUfavHMF6r6pOB/trained_model.tar Downloaded weights in 3.71s Loaded LoRAs in 4.47s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:09, 2.87it/s] 7%|▋ | 2/28 [00:00<00:08, 3.20it/s] 11%|█ | 3/28 [00:00<00:08, 3.05it/s] 14%|█▍ | 4/28 [00:01<00:08, 2.98it/s] 18%|█▊ | 5/28 [00:01<00:07, 2.94it/s] 21%|██▏ | 6/28 [00:02<00:07, 2.92it/s] 25%|██▌ | 7/28 [00:02<00:07, 2.90it/s] 29%|██▊ | 8/28 [00:02<00:06, 2.89it/s] 32%|███▏ | 9/28 [00:03<00:06, 2.89it/s] 36%|███▌ | 10/28 [00:03<00:06, 2.88it/s] 39%|███▉ | 11/28 [00:03<00:05, 2.88it/s] 43%|████▎ | 12/28 [00:04<00:05, 2.88it/s] 46%|████▋ | 13/28 [00:04<00:05, 2.88it/s] 50%|█████ | 14/28 [00:04<00:04, 2.88it/s] 54%|█████▎ | 15/28 [00:05<00:04, 2.88it/s] 57%|█████▋ | 16/28 [00:05<00:04, 2.88it/s] 61%|██████ | 17/28 [00:05<00:03, 2.88it/s] 64%|██████▍ | 18/28 [00:06<00:03, 2.88it/s] 68%|██████▊ | 19/28 [00:06<00:03, 2.88it/s] 71%|███████▏ | 20/28 [00:06<00:02, 2.88it/s] 75%|███████▌ | 21/28 [00:07<00:02, 2.88it/s] 79%|███████▊ | 22/28 [00:07<00:02, 2.88it/s] 82%|████████▏ | 23/28 [00:07<00:01, 2.88it/s] 86%|████████▌ | 24/28 [00:08<00:01, 2.88it/s] 89%|████████▉ | 25/28 [00:08<00:01, 2.88it/s] 93%|█████████▎| 26/28 [00:08<00:00, 2.88it/s] 96%|█████████▋| 27/28 [00:09<00:00, 2.88it/s] 100%|██████████| 28/28 [00:09<00:00, 2.88it/s] 100%|██████████| 28/28 [00:09<00:00, 2.89it/s]
Want to make some of these yourself?
Run this model