Readme
This model doesn't have a readme.
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
import fs from "node:fs";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run maorefrati/maor using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"maorefrati/maor:b3e371998332a55e71b854bd14cfb59ed993d7c377e00187ddd32189db127257",
{
input: {
model: "dev",
width: 737,
prompt: "Maor is a guitar player with an Orange les-Paul guitar on an black crane in a construction site. He has an orange construction vest, black T-shirt, orange trucks, grey walls, sand",
go_fast: false,
lora_scale: 1,
megapixels: "1",
num_outputs: 1,
aspect_ratio: "1:1",
output_format: "webp",
guidance_scale: 3,
output_quality: 80,
prompt_strength: 0.8,
extra_lora_scale: 1,
num_inference_steps: 28
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run maorefrati/maor using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"maorefrati/maor:b3e371998332a55e71b854bd14cfb59ed993d7c377e00187ddd32189db127257",
input={
"model": "dev",
"width": 737,
"prompt": "Maor is a guitar player with an Orange les-Paul guitar on an black crane in a construction site. He has an orange construction vest, black T-shirt, orange trucks, grey walls, sand",
"go_fast": False,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
}
)
# To access the file URL:
print(output[0].url())
#=> "http://example.com"
# To write the file to disk:
with open("my-image.png", "wb") as file:
file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run maorefrati/maor using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "maorefrati/maor:b3e371998332a55e71b854bd14cfb59ed993d7c377e00187ddd32189db127257",
"input": {
"model": "dev",
"width": 737,
"prompt": "Maor is a guitar player with an Orange les-Paul guitar on an black crane in a construction site. He has an orange construction vest, black T-shirt, orange trucks, grey walls, sand",
"go_fast": false,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2025-01-01T17:39:11.031490Z",
"created_at": "2025-01-01T17:38:59.201000Z",
"data_removed": false,
"error": null,
"id": "dnkzea0405rmc0cm4bsssgvfzc",
"input": {
"model": "dev",
"width": 737,
"prompt": "Maor is a guitar player with an Orange les-Paul guitar on an black crane in a construction site. He has an orange construction vest, black T-shirt, orange trucks, grey walls, sand",
"go_fast": false,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
},
"logs": "2025-01-01 17:38:59.274 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys\n2025-01-01 17:38:59.275 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted\nApplying LoRA: 0%| | 0/304 [00:00<?, ?it/s]\nApplying LoRA: 90%|█████████ | 275/304 [00:00<00:00, 2739.83it/s]\nApplying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2540.85it/s]\n2025-01-01 17:38:59.395 | SUCCESS | fp8.lora_loading:unload_loras:564 - LoRAs unloaded in 0.12s\nfree=29693021175808\nDownloading weights\n2025-01-01T17:38:59Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpswd3sacs/weights url=https://replicate.delivery/xezq/asftcqR1YcX8B6TLVqpw30gM2mcuXUV9OLy2EoRPex0kOvAUA/trained_model.tar\n2025-01-01T17:39:04Z | INFO | [ Complete ] dest=/tmp/tmpswd3sacs/weights size=\"344 MB\" total_elapsed=5.320s url=https://replicate.delivery/xezq/asftcqR1YcX8B6TLVqpw30gM2mcuXUV9OLy2EoRPex0kOvAUA/trained_model.tar\nDownloaded weights in 5.35s\n2025-01-01 17:39:04.746 | INFO | fp8.lora_loading:convert_lora_weights:498 - Loading LoRA weights for /src/weights-cache/e7272a8305dc8d4a\n2025-01-01 17:39:04.854 | INFO | fp8.lora_loading:convert_lora_weights:519 - LoRA weights loaded\n2025-01-01 17:39:04.854 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys\n2025-01-01 17:39:04.854 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted\nApplying LoRA: 0%| | 0/304 [00:00<?, ?it/s]\nApplying LoRA: 90%|█████████ | 275/304 [00:00<00:00, 2742.33it/s]\nApplying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2541.92it/s]\n2025-01-01 17:39:04.974 | SUCCESS | fp8.lora_loading:load_lora:539 - LoRA applied in 0.23s\nUsing seed: 18173\n0it [00:00, ?it/s]\n1it [00:00, 8.32it/s]\n2it [00:00, 5.85it/s]\n3it [00:00, 5.36it/s]\n4it [00:00, 5.15it/s]\n5it [00:00, 5.04it/s]\n6it [00:01, 4.96it/s]\n7it [00:01, 4.92it/s]\n8it [00:01, 4.90it/s]\n9it [00:01, 4.89it/s]\n10it [00:01, 4.88it/s]\n11it [00:02, 4.87it/s]\n12it [00:02, 4.86it/s]\n13it [00:02, 4.84it/s]\n14it [00:02, 4.84it/s]\n15it [00:03, 4.84it/s]\n16it [00:03, 4.84it/s]\n17it [00:03, 4.84it/s]\n18it [00:03, 4.84it/s]\n19it [00:03, 4.84it/s]\n20it [00:04, 4.83it/s]\n21it [00:04, 4.84it/s]\n22it [00:04, 4.84it/s]\n23it [00:04, 4.85it/s]\n24it [00:04, 4.85it/s]\n25it [00:05, 4.84it/s]\n26it [00:05, 4.84it/s]\n27it [00:05, 4.83it/s]\n28it [00:05, 4.84it/s]\n28it [00:05, 4.91it/s]\nTotal safe images: 1 out of 1",
"metrics": {
"predict_time": 11.755677037,
"total_time": 11.83049
},
"output": [
"https://replicate.delivery/xezq/VL5AYDFP0MJLJdnbJKJ9C0AjTtOe49jItYVRpzCSwQ2felBoA/out-0.webp"
],
"started_at": "2025-01-01T17:38:59.275813Z",
"status": "succeeded",
"urls": {
"stream": "https://stream.replicate.com/v1/files/bcwr-vhlyp5uhhwqogq7ehsx5myjs6bl43jwb5et75n2ia23hu3fgwn2a",
"get": "https://api.replicate.com/v1/predictions/dnkzea0405rmc0cm4bsssgvfzc",
"cancel": "https://api.replicate.com/v1/predictions/dnkzea0405rmc0cm4bsssgvfzc/cancel"
},
"version": "b3e371998332a55e71b854bd14cfb59ed993d7c377e00187ddd32189db127257"
}
2025-01-01 17:38:59.274 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys
2025-01-01 17:38:59.275 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted
Applying LoRA: 0%| | 0/304 [00:00<?, ?it/s]
Applying LoRA: 90%|█████████ | 275/304 [00:00<00:00, 2739.83it/s]
Applying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2540.85it/s]
2025-01-01 17:38:59.395 | SUCCESS | fp8.lora_loading:unload_loras:564 - LoRAs unloaded in 0.12s
free=29693021175808
Downloading weights
2025-01-01T17:38:59Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpswd3sacs/weights url=https://replicate.delivery/xezq/asftcqR1YcX8B6TLVqpw30gM2mcuXUV9OLy2EoRPex0kOvAUA/trained_model.tar
2025-01-01T17:39:04Z | INFO | [ Complete ] dest=/tmp/tmpswd3sacs/weights size="344 MB" total_elapsed=5.320s url=https://replicate.delivery/xezq/asftcqR1YcX8B6TLVqpw30gM2mcuXUV9OLy2EoRPex0kOvAUA/trained_model.tar
Downloaded weights in 5.35s
2025-01-01 17:39:04.746 | INFO | fp8.lora_loading:convert_lora_weights:498 - Loading LoRA weights for /src/weights-cache/e7272a8305dc8d4a
2025-01-01 17:39:04.854 | INFO | fp8.lora_loading:convert_lora_weights:519 - LoRA weights loaded
2025-01-01 17:39:04.854 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys
2025-01-01 17:39:04.854 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted
Applying LoRA: 0%| | 0/304 [00:00<?, ?it/s]
Applying LoRA: 90%|█████████ | 275/304 [00:00<00:00, 2742.33it/s]
Applying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2541.92it/s]
2025-01-01 17:39:04.974 | SUCCESS | fp8.lora_loading:load_lora:539 - LoRA applied in 0.23s
Using seed: 18173
0it [00:00, ?it/s]
1it [00:00, 8.32it/s]
2it [00:00, 5.85it/s]
3it [00:00, 5.36it/s]
4it [00:00, 5.15it/s]
5it [00:00, 5.04it/s]
6it [00:01, 4.96it/s]
7it [00:01, 4.92it/s]
8it [00:01, 4.90it/s]
9it [00:01, 4.89it/s]
10it [00:01, 4.88it/s]
11it [00:02, 4.87it/s]
12it [00:02, 4.86it/s]
13it [00:02, 4.84it/s]
14it [00:02, 4.84it/s]
15it [00:03, 4.84it/s]
16it [00:03, 4.84it/s]
17it [00:03, 4.84it/s]
18it [00:03, 4.84it/s]
19it [00:03, 4.84it/s]
20it [00:04, 4.83it/s]
21it [00:04, 4.84it/s]
22it [00:04, 4.84it/s]
23it [00:04, 4.85it/s]
24it [00:04, 4.85it/s]
25it [00:05, 4.84it/s]
26it [00:05, 4.84it/s]
27it [00:05, 4.83it/s]
28it [00:05, 4.84it/s]
28it [00:05, 4.91it/s]
Total safe images: 1 out of 1
This model runs on Nvidia H100 GPU hardware. We don't yet have enough runs of this model to provide performance information.
This model doesn't have a readme.
This model is booted and ready for API calls.
This model runs on H100 hardware which costs $0.001525 per second
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
2025-01-01 17:38:59.274 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys
2025-01-01 17:38:59.275 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted
Applying LoRA: 0%| | 0/304 [00:00<?, ?it/s]
Applying LoRA: 90%|█████████ | 275/304 [00:00<00:00, 2739.83it/s]
Applying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2540.85it/s]
2025-01-01 17:38:59.395 | SUCCESS | fp8.lora_loading:unload_loras:564 - LoRAs unloaded in 0.12s
free=29693021175808
Downloading weights
2025-01-01T17:38:59Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpswd3sacs/weights url=https://replicate.delivery/xezq/asftcqR1YcX8B6TLVqpw30gM2mcuXUV9OLy2EoRPex0kOvAUA/trained_model.tar
2025-01-01T17:39:04Z | INFO | [ Complete ] dest=/tmp/tmpswd3sacs/weights size="344 MB" total_elapsed=5.320s url=https://replicate.delivery/xezq/asftcqR1YcX8B6TLVqpw30gM2mcuXUV9OLy2EoRPex0kOvAUA/trained_model.tar
Downloaded weights in 5.35s
2025-01-01 17:39:04.746 | INFO | fp8.lora_loading:convert_lora_weights:498 - Loading LoRA weights for /src/weights-cache/e7272a8305dc8d4a
2025-01-01 17:39:04.854 | INFO | fp8.lora_loading:convert_lora_weights:519 - LoRA weights loaded
2025-01-01 17:39:04.854 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys
2025-01-01 17:39:04.854 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted
Applying LoRA: 0%| | 0/304 [00:00<?, ?it/s]
Applying LoRA: 90%|█████████ | 275/304 [00:00<00:00, 2742.33it/s]
Applying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2541.92it/s]
2025-01-01 17:39:04.974 | SUCCESS | fp8.lora_loading:load_lora:539 - LoRA applied in 0.23s
Using seed: 18173
0it [00:00, ?it/s]
1it [00:00, 8.32it/s]
2it [00:00, 5.85it/s]
3it [00:00, 5.36it/s]
4it [00:00, 5.15it/s]
5it [00:00, 5.04it/s]
6it [00:01, 4.96it/s]
7it [00:01, 4.92it/s]
8it [00:01, 4.90it/s]
9it [00:01, 4.89it/s]
10it [00:01, 4.88it/s]
11it [00:02, 4.87it/s]
12it [00:02, 4.86it/s]
13it [00:02, 4.84it/s]
14it [00:02, 4.84it/s]
15it [00:03, 4.84it/s]
16it [00:03, 4.84it/s]
17it [00:03, 4.84it/s]
18it [00:03, 4.84it/s]
19it [00:03, 4.84it/s]
20it [00:04, 4.83it/s]
21it [00:04, 4.84it/s]
22it [00:04, 4.84it/s]
23it [00:04, 4.85it/s]
24it [00:04, 4.85it/s]
25it [00:05, 4.84it/s]
26it [00:05, 4.84it/s]
27it [00:05, 4.83it/s]
28it [00:05, 4.84it/s]
28it [00:05, 4.91it/s]
Total safe images: 1 out of 1