Readme
Created by Felix together with the Designing with AI Tools workshop at HSLU in Lucerne 2024.
A model trained on picture of liminal spaces
Run this model in Node.js with one line of code:
npm install replicateREPLICATE_API_TOKEN environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>Find your API token in your account settings.
import Replicate from "replicate";
import fs from "node:fs";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});Run marcodemutiis/minimal_liminal using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"marcodemutiis/minimal_liminal:a48aa7042a28bf43470ff85fe176496f4120f8af24f7e4533823c1a516887b93",
{
input: {
width: 1024,
height: 1024,
prompt: "A photograph of an underground minimal_liminal metro station in New York picturing many animals falling and a floating humpback whale",
refine: "no_refiner",
scheduler: "K_EULER",
lora_scale: 0.72,
num_outputs: 1,
guidance_scale: 7.5,
apply_watermark: true,
high_noise_frac: 0.8,
negative_prompt: "elephant, office, overhead lighting, water, underwater",
prompt_strength: 0.8,
num_inference_steps: 50
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);To learn more, take a look at the guide on getting started with Node.js.
pip install replicateREPLICATE_API_TOKEN environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>Find your API token in your account settings.
import replicateRun marcodemutiis/minimal_liminal using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"marcodemutiis/minimal_liminal:a48aa7042a28bf43470ff85fe176496f4120f8af24f7e4533823c1a516887b93",
input={
"width": 1024,
"height": 1024,
"prompt": "A photograph of an underground minimal_liminal metro station in New York picturing many animals falling and a floating humpback whale",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.72,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": True,
"high_noise_frac": 0.8,
"negative_prompt": "elephant, office, overhead lighting, water, underwater",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
)
# To access the file URL:
print(output[0].url())
#=> "http://example.com"
# To write the file to disk:
with open("my-image.png", "wb") as file:
file.write(output[0].read())To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>Find your API token in your account settings.
Run marcodemutiis/minimal_liminal using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "marcodemutiis/minimal_liminal:a48aa7042a28bf43470ff85fe176496f4120f8af24f7e4533823c1a516887b93",
"input": {
"width": 1024,
"height": 1024,
"prompt": "A photograph of an underground minimal_liminal metro station in New York picturing many animals falling and a floating humpback whale",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.72,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "elephant, office, overhead lighting, water, underwater",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictionsTo learn more, take a look at Replicate’s HTTP API reference docs.
Sign in to run this model
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2024-05-13T14:00:59.598912Z",
"created_at": "2024-05-13T14:00:42.396000Z",
"data_removed": false,
"error": null,
"id": "x1cs0xbgkhrgp0cfe90t5pdw90",
"input": {
"width": 1024,
"height": 1024,
"prompt": "A photograph of an underground minimal_liminal metro station in New York picturing many animals falling and a floating humpback whale",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.72,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "elephant, office, overhead lighting, water, underwater",
"prompt_strength": 0.8,
"num_inference_steps": 50
},
"logs": "Using seed: 31356\nEnsuring enough disk space...\nFree disk space: 3007819141120\nDownloading weights: https://replicate.delivery/pbxt/zyoapeg5soQdX6Dy6e5vZBbYCfNbg1HUcUkzoyS37PTiU5nlA/trained_model.tar\n2024-05-13T14:00:43Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/3f3f1214f91af335 url=https://replicate.delivery/pbxt/zyoapeg5soQdX6Dy6e5vZBbYCfNbg1HUcUkzoyS37PTiU5nlA/trained_model.tar\n2024-05-13T14:00:43Z | INFO | [ Complete ] dest=/src/weights-cache/3f3f1214f91af335 size=\"186 MB\" total_elapsed=0.570s url=https://replicate.delivery/pbxt/zyoapeg5soQdX6Dy6e5vZBbYCfNbg1HUcUkzoyS37PTiU5nlA/trained_model.tar\nb''\nDownloaded weights in 0.7151017189025879 seconds\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: A photograph of an underground <s0><s1> metro station in New York picturing many animals falling and a floating humpback whale\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:13, 3.66it/s]\n 4%|▍ | 2/50 [00:00<00:13, 3.65it/s]\n 6%|▌ | 3/50 [00:00<00:12, 3.64it/s]\n 8%|▊ | 4/50 [00:01<00:12, 3.64it/s]\n 10%|█ | 5/50 [00:01<00:12, 3.64it/s]\n 12%|█▏ | 6/50 [00:01<00:12, 3.64it/s]\n 14%|█▍ | 7/50 [00:01<00:11, 3.65it/s]\n 16%|█▌ | 8/50 [00:02<00:11, 3.65it/s]\n 18%|█▊ | 9/50 [00:02<00:11, 3.65it/s]\n 20%|██ | 10/50 [00:02<00:10, 3.65it/s]\n 22%|██▏ | 11/50 [00:03<00:10, 3.65it/s]\n 24%|██▍ | 12/50 [00:03<00:10, 3.65it/s]\n 26%|██▌ | 13/50 [00:03<00:10, 3.65it/s]\n 28%|██▊ | 14/50 [00:03<00:09, 3.65it/s]\n 30%|███ | 15/50 [00:04<00:09, 3.65it/s]\n 32%|███▏ | 16/50 [00:04<00:09, 3.65it/s]\n 34%|███▍ | 17/50 [00:04<00:09, 3.65it/s]\n 36%|███▌ | 18/50 [00:04<00:08, 3.65it/s]\n 38%|███▊ | 19/50 [00:05<00:08, 3.65it/s]\n 40%|████ | 20/50 [00:05<00:08, 3.65it/s]\n 42%|████▏ | 21/50 [00:05<00:07, 3.65it/s]\n 44%|████▍ | 22/50 [00:06<00:07, 3.65it/s]\n 46%|████▌ | 23/50 [00:06<00:07, 3.64it/s]\n 48%|████▊ | 24/50 [00:06<00:07, 3.64it/s]\n 50%|█████ | 25/50 [00:06<00:06, 3.64it/s]\n 52%|█████▏ | 26/50 [00:07<00:06, 3.64it/s]\n 54%|█████▍ | 27/50 [00:07<00:06, 3.64it/s]\n 56%|█████▌ | 28/50 [00:07<00:06, 3.64it/s]\n 58%|█████▊ | 29/50 [00:07<00:05, 3.64it/s]\n 60%|██████ | 30/50 [00:08<00:05, 3.64it/s]\n 62%|██████▏ | 31/50 [00:08<00:05, 3.64it/s]\n 64%|██████▍ | 32/50 [00:08<00:04, 3.64it/s]\n 66%|██████▌ | 33/50 [00:09<00:04, 3.64it/s]\n 68%|██████▊ | 34/50 [00:09<00:04, 3.64it/s]\n 70%|███████ | 35/50 [00:09<00:04, 3.64it/s]\n 72%|███████▏ | 36/50 [00:09<00:03, 3.64it/s]\n 74%|███████▍ | 37/50 [00:10<00:03, 3.64it/s]\n 76%|███████▌ | 38/50 [00:10<00:03, 3.64it/s]\n 78%|███████▊ | 39/50 [00:10<00:03, 3.64it/s]\n 80%|████████ | 40/50 [00:10<00:02, 3.64it/s]\n 82%|████████▏ | 41/50 [00:11<00:02, 3.63it/s]\n 84%|████████▍ | 42/50 [00:11<00:02, 3.64it/s]\n 86%|████████▌ | 43/50 [00:11<00:01, 3.63it/s]\n 88%|████████▊ | 44/50 [00:12<00:01, 3.64it/s]\n 90%|█████████ | 45/50 [00:12<00:01, 3.63it/s]\n 92%|█████████▏| 46/50 [00:12<00:01, 3.63it/s]\n 94%|█████████▍| 47/50 [00:12<00:00, 3.63it/s]\n 96%|█████████▌| 48/50 [00:13<00:00, 3.63it/s]\n 98%|█████████▊| 49/50 [00:13<00:00, 3.64it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.64it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.64it/s]",
"metrics": {
"predict_time": 16.44388,
"total_time": 17.202912
},
"output": [
"https://replicate.delivery/pbxt/bmVWj3zhBtIGN1RVGnPU3sHcwIHSTg6d2NopyxedU5zNe8zSA/out-0.png"
],
"started_at": "2024-05-13T14:00:43.155032Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/x1cs0xbgkhrgp0cfe90t5pdw90",
"cancel": "https://api.replicate.com/v1/predictions/x1cs0xbgkhrgp0cfe90t5pdw90/cancel"
},
"version": "a48aa7042a28bf43470ff85fe176496f4120f8af24f7e4533823c1a516887b93"
}Using seed: 31356
Ensuring enough disk space...
Free disk space: 3007819141120
Downloading weights: https://replicate.delivery/pbxt/zyoapeg5soQdX6Dy6e5vZBbYCfNbg1HUcUkzoyS37PTiU5nlA/trained_model.tar
2024-05-13T14:00:43Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/3f3f1214f91af335 url=https://replicate.delivery/pbxt/zyoapeg5soQdX6Dy6e5vZBbYCfNbg1HUcUkzoyS37PTiU5nlA/trained_model.tar
2024-05-13T14:00:43Z | INFO | [ Complete ] dest=/src/weights-cache/3f3f1214f91af335 size="186 MB" total_elapsed=0.570s url=https://replicate.delivery/pbxt/zyoapeg5soQdX6Dy6e5vZBbYCfNbg1HUcUkzoyS37PTiU5nlA/trained_model.tar
b''
Downloaded weights in 0.7151017189025879 seconds
Loading fine-tuned model
Does not have Unet. assume we are using LoRA
Loading Unet LoRA
Prompt: A photograph of an underground <s0><s1> metro station in New York picturing many animals falling and a floating humpback whale
txt2img mode
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:13, 3.66it/s]
4%|▍ | 2/50 [00:00<00:13, 3.65it/s]
6%|▌ | 3/50 [00:00<00:12, 3.64it/s]
8%|▊ | 4/50 [00:01<00:12, 3.64it/s]
10%|█ | 5/50 [00:01<00:12, 3.64it/s]
12%|█▏ | 6/50 [00:01<00:12, 3.64it/s]
14%|█▍ | 7/50 [00:01<00:11, 3.65it/s]
16%|█▌ | 8/50 [00:02<00:11, 3.65it/s]
18%|█▊ | 9/50 [00:02<00:11, 3.65it/s]
20%|██ | 10/50 [00:02<00:10, 3.65it/s]
22%|██▏ | 11/50 [00:03<00:10, 3.65it/s]
24%|██▍ | 12/50 [00:03<00:10, 3.65it/s]
26%|██▌ | 13/50 [00:03<00:10, 3.65it/s]
28%|██▊ | 14/50 [00:03<00:09, 3.65it/s]
30%|███ | 15/50 [00:04<00:09, 3.65it/s]
32%|███▏ | 16/50 [00:04<00:09, 3.65it/s]
34%|███▍ | 17/50 [00:04<00:09, 3.65it/s]
36%|███▌ | 18/50 [00:04<00:08, 3.65it/s]
38%|███▊ | 19/50 [00:05<00:08, 3.65it/s]
40%|████ | 20/50 [00:05<00:08, 3.65it/s]
42%|████▏ | 21/50 [00:05<00:07, 3.65it/s]
44%|████▍ | 22/50 [00:06<00:07, 3.65it/s]
46%|████▌ | 23/50 [00:06<00:07, 3.64it/s]
48%|████▊ | 24/50 [00:06<00:07, 3.64it/s]
50%|█████ | 25/50 [00:06<00:06, 3.64it/s]
52%|█████▏ | 26/50 [00:07<00:06, 3.64it/s]
54%|█████▍ | 27/50 [00:07<00:06, 3.64it/s]
56%|█████▌ | 28/50 [00:07<00:06, 3.64it/s]
58%|█████▊ | 29/50 [00:07<00:05, 3.64it/s]
60%|██████ | 30/50 [00:08<00:05, 3.64it/s]
62%|██████▏ | 31/50 [00:08<00:05, 3.64it/s]
64%|██████▍ | 32/50 [00:08<00:04, 3.64it/s]
66%|██████▌ | 33/50 [00:09<00:04, 3.64it/s]
68%|██████▊ | 34/50 [00:09<00:04, 3.64it/s]
70%|███████ | 35/50 [00:09<00:04, 3.64it/s]
72%|███████▏ | 36/50 [00:09<00:03, 3.64it/s]
74%|███████▍ | 37/50 [00:10<00:03, 3.64it/s]
76%|███████▌ | 38/50 [00:10<00:03, 3.64it/s]
78%|███████▊ | 39/50 [00:10<00:03, 3.64it/s]
80%|████████ | 40/50 [00:10<00:02, 3.64it/s]
82%|████████▏ | 41/50 [00:11<00:02, 3.63it/s]
84%|████████▍ | 42/50 [00:11<00:02, 3.64it/s]
86%|████████▌ | 43/50 [00:11<00:01, 3.63it/s]
88%|████████▊ | 44/50 [00:12<00:01, 3.64it/s]
90%|█████████ | 45/50 [00:12<00:01, 3.63it/s]
92%|█████████▏| 46/50 [00:12<00:01, 3.63it/s]
94%|█████████▍| 47/50 [00:12<00:00, 3.63it/s]
96%|█████████▌| 48/50 [00:13<00:00, 3.63it/s]
98%|█████████▊| 49/50 [00:13<00:00, 3.64it/s]
100%|██████████| 50/50 [00:13<00:00, 3.64it/s]
100%|██████████| 50/50 [00:13<00:00, 3.64it/s]This model runs on Nvidia L40S GPU hardware. We don't yet have enough runs of this model to provide performance information.
Created by Felix together with the Designing with AI Tools workshop at HSLU in Lucerne 2024.
This model is booted and ready for API calls.
This model runs on L40S hardware which costs $0.000975 per second
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
Using seed: 31356
Ensuring enough disk space...
Free disk space: 3007819141120
Downloading weights: https://replicate.delivery/pbxt/zyoapeg5soQdX6Dy6e5vZBbYCfNbg1HUcUkzoyS37PTiU5nlA/trained_model.tar
2024-05-13T14:00:43Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/3f3f1214f91af335 url=https://replicate.delivery/pbxt/zyoapeg5soQdX6Dy6e5vZBbYCfNbg1HUcUkzoyS37PTiU5nlA/trained_model.tar
2024-05-13T14:00:43Z | INFO | [ Complete ] dest=/src/weights-cache/3f3f1214f91af335 size="186 MB" total_elapsed=0.570s url=https://replicate.delivery/pbxt/zyoapeg5soQdX6Dy6e5vZBbYCfNbg1HUcUkzoyS37PTiU5nlA/trained_model.tar
b''
Downloaded weights in 0.7151017189025879 seconds
Loading fine-tuned model
Does not have Unet. assume we are using LoRA
Loading Unet LoRA
Prompt: A photograph of an underground <s0><s1> metro station in New York picturing many animals falling and a floating humpback whale
txt2img mode
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:13, 3.66it/s]
4%|▍ | 2/50 [00:00<00:13, 3.65it/s]
6%|▌ | 3/50 [00:00<00:12, 3.64it/s]
8%|▊ | 4/50 [00:01<00:12, 3.64it/s]
10%|█ | 5/50 [00:01<00:12, 3.64it/s]
12%|█▏ | 6/50 [00:01<00:12, 3.64it/s]
14%|█▍ | 7/50 [00:01<00:11, 3.65it/s]
16%|█▌ | 8/50 [00:02<00:11, 3.65it/s]
18%|█▊ | 9/50 [00:02<00:11, 3.65it/s]
20%|██ | 10/50 [00:02<00:10, 3.65it/s]
22%|██▏ | 11/50 [00:03<00:10, 3.65it/s]
24%|██▍ | 12/50 [00:03<00:10, 3.65it/s]
26%|██▌ | 13/50 [00:03<00:10, 3.65it/s]
28%|██▊ | 14/50 [00:03<00:09, 3.65it/s]
30%|███ | 15/50 [00:04<00:09, 3.65it/s]
32%|███▏ | 16/50 [00:04<00:09, 3.65it/s]
34%|███▍ | 17/50 [00:04<00:09, 3.65it/s]
36%|███▌ | 18/50 [00:04<00:08, 3.65it/s]
38%|███▊ | 19/50 [00:05<00:08, 3.65it/s]
40%|████ | 20/50 [00:05<00:08, 3.65it/s]
42%|████▏ | 21/50 [00:05<00:07, 3.65it/s]
44%|████▍ | 22/50 [00:06<00:07, 3.65it/s]
46%|████▌ | 23/50 [00:06<00:07, 3.64it/s]
48%|████▊ | 24/50 [00:06<00:07, 3.64it/s]
50%|█████ | 25/50 [00:06<00:06, 3.64it/s]
52%|█████▏ | 26/50 [00:07<00:06, 3.64it/s]
54%|█████▍ | 27/50 [00:07<00:06, 3.64it/s]
56%|█████▌ | 28/50 [00:07<00:06, 3.64it/s]
58%|█████▊ | 29/50 [00:07<00:05, 3.64it/s]
60%|██████ | 30/50 [00:08<00:05, 3.64it/s]
62%|██████▏ | 31/50 [00:08<00:05, 3.64it/s]
64%|██████▍ | 32/50 [00:08<00:04, 3.64it/s]
66%|██████▌ | 33/50 [00:09<00:04, 3.64it/s]
68%|██████▊ | 34/50 [00:09<00:04, 3.64it/s]
70%|███████ | 35/50 [00:09<00:04, 3.64it/s]
72%|███████▏ | 36/50 [00:09<00:03, 3.64it/s]
74%|███████▍ | 37/50 [00:10<00:03, 3.64it/s]
76%|███████▌ | 38/50 [00:10<00:03, 3.64it/s]
78%|███████▊ | 39/50 [00:10<00:03, 3.64it/s]
80%|████████ | 40/50 [00:10<00:02, 3.64it/s]
82%|████████▏ | 41/50 [00:11<00:02, 3.63it/s]
84%|████████▍ | 42/50 [00:11<00:02, 3.64it/s]
86%|████████▌ | 43/50 [00:11<00:01, 3.63it/s]
88%|████████▊ | 44/50 [00:12<00:01, 3.64it/s]
90%|█████████ | 45/50 [00:12<00:01, 3.63it/s]
92%|█████████▏| 46/50 [00:12<00:01, 3.63it/s]
94%|█████████▍| 47/50 [00:12<00:00, 3.63it/s]
96%|█████████▌| 48/50 [00:13<00:00, 3.63it/s]
98%|█████████▊| 49/50 [00:13<00:00, 3.64it/s]
100%|██████████| 50/50 [00:13<00:00, 3.64it/s]
100%|██████████| 50/50 [00:13<00:00, 3.64it/s]